Power Series
 Calculus II

Josh Engwer

TTU

07 April 2014

Power Series (Definition)

Definition

A power series has the form

$$
\sum_{k=0}^{\infty} a_{k}(x-c)^{k}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\cdots
$$

- A power series with $c=0$ simplifies to:

$$
\sum_{k=0}^{\infty} a_{k} x^{k}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
$$

- A polynomial is a finite power series :
e.g. $x^{3}-2 x^{2}+3 x-4=\sum_{k=0}^{\infty} a_{k} x^{k}$ with $\left\{\begin{array}{l}a_{0}=-4, a_{1}=3, a_{2}=-2, a_{3}=1 \\ a_{4}=a_{5}=a_{6}=a_{7}=\cdots=0\end{array}\right.$

Power Series (Convergence)

Proposition

Given a power series $\sum_{k=0}^{\infty} a_{k}(x-c)^{k}$, exactly one of the following is true:

$$
\begin{aligned}
& \sum a_{k}(x-c)^{k} \text { converges for all } x \\
& \sum a_{k}(x-c)^{k} \text { converges only for } x=c \\
& \sum a_{k}(x-c)^{k} \text { converges } \forall x \in(c-R, c+R) \\
& \sum a_{k}(x-c)^{k} \text { converges } \forall x \in[c-R, c+R) \\
& \sum a_{k}(x-c)^{k} \text { converges } \forall x \in(c-R, c+R] \\
& \sum a_{k}(x-c)^{k} \text { converges } \forall x \in[c-R, c+R]
\end{aligned}
$$

NOTE: For the bottom four cases above, the power series converges absolutely on the open interval $(c-R, c+R)$.

Power Series (Set of Convergence)

Definition

The set of convergence for a power series $\sum_{k=0}^{\infty} a_{k}(x-c)^{k}$ is the set of all x-values s.t. the power series converges.

Power series $\sum a_{k}(x-c)^{k}$ converges...

- ... everywhere $\quad \Longleftrightarrow$ set of convergence is \mathbb{R}
- ... only for $x=c \quad \Longleftrightarrow$ set of convergence is $\{c\}$
- ... $\forall x \in(c-R, c+R) \Longleftrightarrow$ set of convergence is $(c-R, c+R)$
- ... $\forall x \in[c-R, c+R) \Longleftrightarrow$ set of convergence is $[c-R, c+R)$
- ... $\forall x \in(c-R, c+R] \Longleftrightarrow$ set of convergence is $(c-R, c+R]$
- ... $\forall x \in[c-R, c+R] \Longleftrightarrow$ set of convergence is $[c-R, c+R]$

Power Series (Radius of Convergence)

Definition

The radius of convergence for a power series $\sum_{k=0}^{\infty} a_{k}(x-c)^{k}$ is half the length of the set of convergence.

Power series $\sum a_{k}(x-c)^{k}$ converges...

- ... everywhere $\quad \Longleftrightarrow$ radius of convergence is ∞
- ... only for $x=c \quad \Longleftrightarrow$ radius of convergence is 0
- ... $\forall x \in(c-R, c+R) \Longleftrightarrow$ radius of convergence is R
- ... $\forall x \in[c-R, c+R) \Longleftrightarrow$ radius of convergence is R
- ... $\forall x \in(c-R, c+R] \Longleftrightarrow$ radius of convergence is R
- ... $\forall x \in[c-R, c+R] \Longleftrightarrow$ radius of convergence is R

Power Series (Procedure for Convergence)

Given power series $\sum a_{k}(x-c)^{k}$,

- To find the radius of convergence, use the Ratio Test or Root Test on $\sum\left|a_{k}(x-c)^{k}\right|$:
- Ratio Test: solve the inequality $\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}(x-c)^{k+1}}{a_{k}(x-c)^{k}}\right|<1$ for x
- Root Test: solve the inequality $\lim _{k \rightarrow \infty} \sqrt[k]{\left|a_{k}(x-c)^{k}\right|}<1$ for x
- If a true statement results like $0<1$, then radius of convergence $R=\infty$
- If a false statement results like $3<1$, then radius of convergence $R=0$
- To determine convergence on the boundary of interval $(c-R, c+R)$, that is, at $x=c-R$ and $x=c+R$, test the series for convergence at each endpoint.
- At this point, the set of convergence is known.

Properties of Absolute Value

Proposition

Let $a, b \in \mathbb{R}$. Then:
(i) $|a b|=|a||b|$
(ii) $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$
(iii) $\left|a^{k}\right|=|a|^{k}$
(iv) In general, $|a+b| \neq|a|+|b| \quad$ and $\quad|a-b| \neq|a|-|b|$

PROOF:
(i) $|a b|:=\sqrt{(a b)^{2}}=\sqrt{a^{2} b^{2}}=\sqrt{a^{2}} \sqrt{b^{2}}:=|a||b|$
(ii) $\left|\frac{a}{b}\right|:=\sqrt{\left(\frac{a}{b}\right)^{2}}=\sqrt{\frac{a^{2}}{b^{2}}}=\frac{\sqrt{a^{2}}}{\sqrt{b^{2}}}:=\frac{|a|}{|b|}$
(iii) $\left|a^{k}\right|:=\sqrt{\left(a^{k}\right)^{2}}=\left[\left(a^{k}\right)^{2}\right]^{1 / 2}=a^{(k)(2)(1 / 2)}=\left[\left(a^{2}\right)^{1 / 2}\right]^{k}=\left(\sqrt{a^{2}}\right)^{k}:=|a|^{k}$
(iv) Let $a=1$ and $b=-1$.

Then, $|a+b|=0 \neq 2=|a|+|b|$ and $|a-b|=2 \neq 0=|a|-|b| \quad$ QED

Power Series (Properties)

A power series $\sum_{k=0}^{\infty} a_{k}(x-c)^{k}$ with radius of convergence $R>0$:

- Is infinitely differentiable on its interval of absolute convergence
- Can be differentiated term by term on $(c-R, c+R)$:

$$
\frac{d}{d x}\left[\sum_{k=0}^{\infty} a_{k}(x-c)^{k}\right]=\sum_{k=0}^{\infty} \frac{d}{d x}\left[a_{k}(x-c)^{k}\right]=\sum_{k=1}^{\infty} k a_{k}(x-c)^{k-1}
$$

- Can be integrated term by term on $(c-R, c+R)$:

$$
\begin{aligned}
& \int\left(\sum_{k=0}^{\infty} a_{k}(x-c)^{k}\right) d x=\sum_{k=0}^{\infty}\left(\int a_{k}(x-c)^{k} d x\right)=\sum_{k=0}^{\infty} \frac{a_{k}}{k+1}(x-c)^{k+1}+C \\
& \int_{a}^{b}\left(\sum_{k=0}^{\infty} a_{k}(x-c)^{k}\right) d x=\sum_{k=0}^{\infty} \int_{a}^{b} a_{k}(x-c)^{k} d x=\sum_{k=0}^{\infty}\left[\frac{a_{k}}{k+1}(x-c)^{k+1}\right]_{x=a}^{x=b}
\end{aligned}
$$

- Can be rearranged without changing its sum on $(c-R, c+R)$.
- Behaves like a polynomial on its interval of absolute convergence.

This means power series can be used to integrate nonelementary integrals.

Special Functions

Some special functions are defined by power series:

- Bessel Functions: $J_{\alpha}(x):=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(k+\alpha+1)}\left(\frac{x}{2}\right)^{2 k+\alpha} \quad(\alpha \geq 0)$

$$
\text { - } J_{0}(x):=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(k!)^{2} 2^{2 k}} \quad J_{1}(x):=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{k!(k+1)!2^{2 k+1}}
$$

- Error Function: $\operatorname{erf}(x):=\frac{2}{\sqrt{\pi}} \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{k!(2 k+1)}$
- Hypergeometric Fcn: $F(a, b ; c ; x):=\frac{\Gamma(c)}{\Gamma(a) \Gamma(b)} \sum_{k=0}^{\infty} \frac{\Gamma(a+k) \Gamma(b+k)}{\Gamma(c+k)} \frac{x^{k}}{k!}$

Special functions are "special" in the sense that they tend to show up often in certain branches of mathematics, statistics, physics, and engineering.

IMPORTANT: DO NOT MEMORIZE THESE SPECIAL FUNCTIONS!

Fin.

