Power Series

Calculus II

Josh Engwer

TTU

07 April 2014

Definition

A power series has the form

$$\sum_{k=0}^{\infty} a_k (x-c)^k = a_0 + a_1 (x-c) + a_2 (x-c)^2 + a_3 (x-c)^3 + \cdots$$

- A power series with c = 0 simplifies to: $\sum_{k=0}^{\infty} a_k x^k = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$
- A polynomial is a finite power series :

e.g.
$$x^3 - 2x^2 + 3x - 4 = \sum_{k=0}^{\infty} a_k x^k$$
 with $\begin{cases} a_0 = -4, a_1 = 3, a_2 = -2, a_3 = 1 \\ a_4 = a_5 = a_6 = a_7 = \dots = 0 \end{cases}$

Proposition

Given a **power series** $\sum_{k=0}^{\infty} a_k (x-c)^k$, exactly one of the following is true: $\sum_{k=0}^{\infty} a_k (x-c)^k$ converges for all x $\sum_{k=0}^{\infty} a_k (x-c)^k$ converges only for x = c $\sum_{k=0}^{\infty} a_k (x-c)^k$ converges $\forall x \in (c-R, c+R)$ $\sum_{k=0}^{\infty} a_k (x-c)^k$ converges $\forall x \in [c-R, c+R]$ $\sum_{k=0}^{\infty} a_k (x-c)^k$ converges $\forall x \in (c-R, c+R]$ $\sum_{k=0}^{\infty} a_k (x-c)^k$ converges $\forall x \in [c-R, c+R]$

NOTE: For the bottom four cases above, the power series **converges** absolutely on the open interval (c - R, c + R).

Power Series (Set of Convergence)

Definition

The **set of convergence** for a power series $\sum_{k=0}^{\infty} a_k (x-c)^k$ is the set of all *x*-values s.t. the power series converges.

Power series $\sum a_k(x-c)^k$ converges...

- ... everywhere \iff set of convergence is \mathbb{R} • ... only for x = c \iff set of convergence is $\{c\}$ • ... $\forall x \in (c - R, c + R) \iff$ set of convergence is (c - R, c + R)• ... $\forall x \in [c - R, c + R) \iff$ set of convergence is [c - R, c + R)
- ... $\forall x \in (c R, c + R] \iff$ set of convergence is (c R, c + R]
- ... $\forall x \in [c R, c + R] \iff$ set of convergence is [c R, c + R]

Power Series (Radius of Convergence)

Definition

The **radius of convergence** for a power series $\sum_{k=0}^{\infty} a_k (x-c)^k$ is half the length of the set of convergence.

Power series $\sum a_k(x-c)^k$ converges...

- ... everywhere \iff radius of convergence is ∞ • ... only for x = c \iff radius of convergence is 0 • ... $\forall x \in (c - R, c + R) \iff$ radius of convergence is R• ... $\forall x \in [c - R, c + R) \iff$ radius of convergence is R• ... $\forall x \in (c - R, c + R) \iff$ radius of convergence is R
- ... $\forall x \in [c R, c + R] \iff$ radius of convergence is R

Given power series $\sum a_k(x-c)^k$,

- To find the radius of convergence, use the Ratio Test or Root Test on $\sum |a_k(x-c)^k|$:
 - Ratio Test: solve the **inequality** $\lim_{k \to \infty} \left| \frac{a_{k+1}(x-c)^{k+1}}{a_k(x-c)^k} \right| < 1$ for x
 - Root Test: solve the **inequality** $\lim_{k \to \infty} \sqrt[k]{|a_k(x-c)^k|} < 1$ for x
 - If a true statement results like 0 < 1, then radius of convergence $R = \infty$
 - If a false statement results like 3 < 1, then radius of convergence R = 0
- To determine convergence on the boundary of interval (c R, c + R), that is, at x = c R and x = c + R, test the series for convergence at each endpoint.
- At this point, the set of convergence is known.

Properties of Absolute Value

Proposition

Let $a, b \in \mathbb{R}$. Then:

- $(i) \quad |ab| = |a||b|$
- $(ii) \quad \left|\frac{a}{b}\right| = \frac{|a|}{|b|}$
- (*iii*) $|a^k| = |a|^k$

(iv) In general, $|a+b| \neq |a|+|b|$ and $|a-b| \neq |a|-|b|$

PROOF:

(i)
$$|ab| := \sqrt{(ab)^2} = \sqrt{a^2b^2} = \sqrt{a^2}\sqrt{b^2} := |a||b|$$

(ii) $\left|\frac{a}{b}\right| := \sqrt{\left(\frac{a}{b}\right)^2} = \sqrt{\frac{a^2}{b^2}} = \frac{\sqrt{a^2}}{\sqrt{b^2}} := \frac{|a|}{|b|}$
(iii) $|a^k| := \sqrt{(a^k)^2} = \left[\left(a^k\right)^2\right]^{1/2} = a^{(k)(2)(1/2)} = \left[\left(a^2\right)^{1/2}\right]^k = \left(\sqrt{a^2}\right)^k := |a|^k$
(iv) Let $a = 1$ and $b = -1$.
Then, $|a + b| = 0 \neq 2 = |a| + |b|$ and $|a - b| = 2 \neq 0 = |a| - |b|$ QED
Josh Engree (TTU) Power Series 07 April 2014 7/10

Power Series (Properties)

A power series $\sum_{k=0}^{\infty} a_k (x-c)^k$ with radius of convergence R > 0:

- Is infinitely differentiable on its interval of absolute convergence
- Can be differentiated term by term on (c R, c + R):

$$\frac{d}{dx} \left[\sum_{k=0}^{\infty} a_k (x-c)^k \right] = \sum_{k=0}^{\infty} \frac{d}{dx} \left[a_k (x-c)^k \right] = \sum_{k=1}^{\infty} k a_k (x-c)^{k-1}$$

• Can be integrated term by term on (c - R, c + R):

$$\int \left(\sum_{k=0}^{\infty} a_k (x-c)^k\right) dx = \sum_{k=0}^{\infty} \left(\int a_k (x-c)^k dx\right) = \sum_{k=0}^{\infty} \frac{a_k}{k+1} (x-c)^{k+1} + C$$
$$\int_a^b \left(\sum_{k=0}^{\infty} a_k (x-c)^k\right) dx = \sum_{k=0}^{\infty} \int_a^b a_k (x-c)^k dx = \sum_{k=0}^{\infty} \left[\frac{a_k}{k+1} (x-c)^{k+1}\right]_{x=a}^{x=b}$$

- Can be rearranged without changing its sum on (c R, c + R).
- Behaves like a polynomial on its interval of absolute convergence.

This means power series can be used to integrate nonelementary integrals.

Special Functions

Some special functions are defined by power series:

• Bessel Functions:
$$J_{\alpha}(x) := \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(k+\alpha+1)} \left(\frac{x}{2}\right)^{2k+\alpha}$$
 $(\alpha \ge 0)$
• $J_{0}(x) := \sum_{k=0}^{\infty} \frac{(-1)^{k}x^{2k}}{(k!)^{2}2^{2k}}$ $J_{1}(x) := \sum_{k=0}^{\infty} \frac{(-1)^{k}x^{2k+1}}{k!(k+1)!2^{2k+1}}$
• Error Function: $\operatorname{erf}(x) := \frac{2}{\sqrt{\pi}} \sum_{k=0}^{\infty} \frac{(-1)^{k}x^{2k+1}}{k!(2k+1)}$
• Hypergeometric Fcn: $F(a,b;c;x) := \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} \sum_{k=0}^{\infty} \frac{\Gamma(a+k)\Gamma(b+k)}{\Gamma(c+k)} \frac{x^{k}}{k!}$

Special functions are "special" in the sense that they tend to show up often in certain branches of mathematics, statistics, physics, and engineering.

IMPORTANT: DO <u>NOT</u> MEMORIZE THESE SPECIAL FUNCTIONS!

Josh Engwer	(TTU)
-------------	-------

Fin.