Taylor Series \& Binomial Series

Calculus II

Josh Engwer

TTU

09 April 2014

Continuity \& Differentiability of a Function (Notation)

Definition

Given function $f(x)$ and set $S \subseteq \mathbb{R}$. Then:

$$
f \in C(S) \Longleftrightarrow f \text { is continuous on set } S
$$

$$
f \in C^{1}(S) \Longleftrightarrow f, f^{\prime} \in C(S) \Longrightarrow f \text { is differentiable on set } S
$$

$$
f \in C^{2}(S) \Longleftrightarrow f, f^{\prime}, f^{\prime \prime} \in C(S) \Longrightarrow f \text { is twice-differentiable on set } S
$$

$f \in C^{3}(S) \Longleftrightarrow f, f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime} \in C(S) \Longrightarrow f$ is 3-times differentiable on set S
$f \in C^{4}(S) \Longleftrightarrow f, f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}, f^{(4)} \in C(S) \Longrightarrow f$ is 4-times differentiable on set S

$$
f \in C^{\infty}(S) \Longleftrightarrow \frac{\text { all derivatives exist and are continuous on set } S \Longrightarrow}{f \text { is infinitely differentiable on set } S}
$$

Taylor Series (Motivation)

TASK: Find a power series representation for a function $f(x) \in C^{\infty}$:

$$
f(x)=\sum_{k=0}^{\infty} a_{k}(x-c)^{k}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\cdots
$$

What are the values of the coefficients $a_{0}, a_{1}, a_{2}, a_{3}, \ldots$???

Taylor Series (Motivation)

$$
f(x)=\sum_{k=0}^{\infty} a_{k}(x-c)^{k}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\cdots
$$

Observe that $f(c)=a_{0} \Longrightarrow a_{0}=f(c)$

Taylor Series (Motivation)

$$
f(x)=\sum_{k=0}^{\infty} a_{k}(x-c)^{k}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\cdots
$$

Observe that $f(c)=a_{0} \Longrightarrow a_{0}=f(c)$

$$
f^{\prime}(x)=\sum_{k=0}^{\infty} k a_{k}(x-c)^{k-1}=a_{1}+2 a_{2}(x-c)+3 a_{3}(x-c)^{2}+\cdots
$$

Observe that $f^{\prime}(c)=a_{1} \Longrightarrow a_{1}=\frac{f^{\prime}(c)}{1!}$

Taylor Series (Motivation)

$$
f^{\prime}(x)=\sum_{k=0}^{\infty} k a_{k}(x-c)^{k-1}=a_{1}+2 a_{2}(x-c)+3 a_{3}(x-c)^{2}+\cdots
$$

Observe that $f^{\prime}(c)=a_{1} \Longrightarrow a_{1}=\frac{f^{\prime}(c)}{1!}$

$$
f^{\prime \prime}(x)=\sum_{k=0}^{\infty} k(k-1) a_{k}(x-c)^{k-2}=2 a_{2}+6 a_{3}(x-c)+\cdots
$$

Observe that $f^{\prime \prime}(c)=2 a_{2} \Longrightarrow a_{2}=\frac{f^{\prime \prime}(c)}{2}=\frac{f^{\prime \prime}(c)}{2!}$

Taylor Series (Motivation)

$$
f^{\prime \prime}(x)=\sum_{k=0}^{\infty} k(k-1) a_{k}(x-c)^{k-2}=2 a_{2}+6 a_{3}(x-c)+\cdots
$$

Observe that $f^{\prime \prime}(c)=2 a_{2} \Longrightarrow a_{2}=\frac{f^{\prime \prime}(c)}{2}=\frac{f^{\prime \prime}(c)}{2!}$

$$
f^{\prime \prime \prime}(x)=\sum_{k=0}^{\infty} k(k-1)(k-2) a_{k}(x-c)^{k-3}=6 a_{3}+\cdots
$$

Observe that $f^{\prime \prime \prime}(c)=6 a_{3} \Longrightarrow a_{3}=\frac{f^{\prime \prime \prime}(c)}{6}=\frac{f^{\prime \prime \prime}(c)}{3!}$

Taylor Series (Motivation)

$$
f(x)=\sum_{k=0}^{\infty} a_{k}(x-c)^{k}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\cdots
$$

$$
\begin{aligned}
& f(c)=a_{0} \Longrightarrow a_{0}=f(c) \\
& f^{\prime}(c)=a_{1} \Longrightarrow a_{1}=\frac{f^{\prime}(c)}{1!} \\
& f^{\prime \prime}(c)=2 a_{2} \Longrightarrow a_{2}=\frac{f^{\prime \prime}(c)}{2}=\frac{f^{\prime \prime}(c)}{2!} \\
& f^{\prime \prime \prime}(c)=6 a_{3} \Longrightarrow a_{3}=\frac{f^{\prime \prime \prime}(c)}{6}=\frac{f^{\prime \prime \prime}(c)}{3!} \\
& \vdots \\
& f^{(k)}(c)=k(k-1)(k-2) \cdots(3)(2) a_{k} \Longrightarrow a_{k}=\frac{f^{(k)}(c)}{k!}
\end{aligned}
$$

Taylor Series (Definition)

Definition

Let $f \in C^{\infty}(c-R, c+R)$. Then the Taylor series about $x=c$ has the form

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!}(x-c)^{k}=
$$

$$
f(c)+\frac{f^{\prime}(c)}{1!}(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\frac{f^{\prime \prime \prime}(c)}{3!}(x-c)^{3}+\frac{f^{(4)}(c)}{4!}(x-c)^{4}+\cdots
$$

which is a power series that converges absolutely to $f(x) \forall x \in(c-R, c+R)$ where R is the radius of convergence.

A Maclaurin series is just a Taylor series about $x=0$:

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\frac{f^{(4)}(0)}{4!} x^{4}+\cdots
$$

Existence \& Uniqueness of a Taylor Series Representation

Theorem

(Taylor Series Representation Theorem)
Let $f \in C^{\infty}(c-R, c+R)$.
Then $f(x)$ has a unique power series representation:
$f(x)=f(c)+\frac{f^{\prime}(c)}{1!}(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\frac{f^{\prime \prime \prime}(c)}{3!}(x-c)^{3}+\frac{f^{(4)}(c)}{4!}(x-c)^{4}+\cdots$
i.e. the unique power series representation for $f(x)$ is the Taylor series.

PROOF: See the textbook if interested.

Construction of a Taylor Series (Toolkit)

- Computing $f(c), f^{\prime}(c), f^{\prime \prime}(c), f^{\prime \prime \prime}(c), f^{(4)}(c), \ldots$ (Always available)
- Clever substitution into a known Taylor series
- Clever manipulation of a geometric series
- Differentiating a known Taylor series
- Integrating a known Taylor series
- Clever use of trig identities
- Multiplying a Taylor series by a monomial
- Dividing a Taylor series by a monomial
- Multiplying two Taylor series
- Dividing two Taylor series (this is subtle, so not considered here)
- Clever manipulation of a Binomial series (see next slide)

Binomial Series

Corollary

The Binomial Series is

$$
(1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2!} x^{2}+\frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^{3}+\cdots
$$

where $\alpha \in \mathbb{R}$ and $|x|<1$

Binomial Series

Corollary

The Binomial Series is

$$
(1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2!} x^{2}+\frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^{3}+\cdots
$$

where $\alpha \in \mathbb{R}$ and $|x|<1$
PROOF: Construct the Taylor Series about $x=0$ of $f(x)=(1+x)^{\alpha}$:

$$
\begin{array}{rlrlrl}
f(x) & =(1+x)^{\alpha} & \Longrightarrow & f(0) & =1 \\
f^{\prime}(x) & =\alpha(1+x)^{\alpha-1} & \Longrightarrow & f^{\prime}(0) & = & \alpha \\
f^{\prime \prime}(x) & =\alpha(\alpha-1)(1+x)^{\alpha-2} & \Longrightarrow & f^{\prime \prime}(0) & =\alpha(\alpha-1) \\
f^{\prime \prime \prime}(x) & =\alpha(\alpha-1)(\alpha-2)(1+x)^{\alpha-3} & \Longrightarrow \quad f^{\prime \prime \prime}(0) & =\alpha(\alpha-1)(\alpha-2) \\
\vdots & \vdots & & \vdots & \vdots \\
\Longrightarrow(1+x)^{\alpha}=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime \prime}(0)}{3!} x^{3}+\cdots \\
& \\
\Longrightarrow(1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2!} x^{2}+\frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^{3}+\cdots \\
& \\
& \text { Josh Engwer (TTU) }
\end{array}
$$

Binomial Series

Corollary

The Binomial Series is

$$
(1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2!} x^{2}+\frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^{3}+\cdots
$$

where $\alpha \in \mathbb{R}$ and $|x|<1$
PROOF: Observe that the Binomial Series is a power series $\sum_{k=0}^{\infty} a_{k} x^{k}$ with $a_{k}=\frac{\alpha(\alpha-1)(\alpha-2) \cdots[\alpha-(k-1)]}{k!}$.
Then it converges provided $\lim _{k \rightarrow \infty}\left|\frac{a_{k+1} x^{k+1}}{a_{k} x^{k}}\right|<1$:
$\Longrightarrow \lim _{k \rightarrow \infty}\left|\frac{\alpha(\alpha-1) \cdots[\alpha-(k-1)](\alpha-k)}{(k+1)!} \cdot \frac{k!}{\alpha(\alpha-1) \cdots[\alpha-(k-1)]}\right||x|<1$
$\Longrightarrow \lim _{k \rightarrow \infty}\left|\frac{\alpha-k}{k+1}\right||x|<1 \Longrightarrow \lim _{k \rightarrow \infty} \frac{\left|\frac{\alpha}{k}-1\right|}{1+\frac{1}{k}}|x|<1 \Longrightarrow \frac{|0-1|}{1+0}|x|<1$ $\Longrightarrow|x|<1$

Binomial Series

Corollary

The Binomial Series is

$$
(1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2!} x^{2}+\frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^{3}+\cdots
$$

where $\alpha \in \mathbb{R}$ and $|x|<1$
PROOF: Finally, check convergence at the endpoints $x=1$ and $x=-1$: Take Advanced Calculus.

QED

Applications of Taylor Series

- Finding limits that would require too many iterations of L'Hôpital's Rule
- Evaluation of nonelementary integrals
- Solution to advanced differential equations (not considered here)
- Polynomial approximation of a complicated function (not considered)
- Central to functions of complex variables (not considered here)

A Note about Convergence of a Taylor Series

- It's possible that the set of convergence of a function is a single point:
- e.g. Let $f(x)=\left\{\begin{array}{cl}e^{-1 / x^{2}} & , \text { if } x \neq 0 \\ 0 & , \text { if } x=0\end{array}\right.$
- Then the Taylor series about $x=0$ for $f(x)$ is the zero function:

$$
0+\frac{0}{1!} x+\frac{0}{2!} x^{2}+\frac{0}{3!} x^{3}+\frac{0}{4!} x^{4}+\cdots
$$

- Therefore, the set of convergence for $f(x)$ is $\{0\}$.
- It's possible that $f(x)$ exists for x-values outside of the set of convergence of its Taylor series.
- e.g. The Taylor series about $x=0$ for $\ln (1+x)$ converges for all $x \in(-1,1]$, yet $\ln (1+2)$ is defined!!
- i.e. A Taylor series for $f(x)$ is a very poor approximation to $f(x)$ for all x outside the set of convergence.

Taylor's Remainder Theorem

Theorem

(Taylor's Remainder Theorem)
Let $f \in C^{n+1}(a, b)$ where $c \in(a, b)$. Then

$$
f(x)=T_{n}(x)+R_{n}(x) \quad \forall x \in(a, b)
$$

where
$T_{n}(x)=f(c)+\frac{f^{\prime}(c)}{1!}(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}$
is the $n^{\text {th }}$ Taylor polynomial and
$R_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-c)^{n+1}$ is the $n^{\text {th }}$ Taylor Remainder
where ξ depends on x and lies between c and x.
REMARK: ξ is the lowercase Greek letter "xi" (pronounced kuh - SEE) PROOF: Take Advanced Calculus.
This is used in Numerical Analysis, and so will not be considered here.

Taylor Approximations of Functions (Demo)

(DEMO) TAYLOR APPROXIMATIONS OF FUNCTIONS (Click below):

Fin.

