Unfortunately, WeBWorK wants you to actually find the area of polar regions (not setup the integral).
For some area problems, you will run into integrals of the form:
$\int_{\alpha}^{\beta} \cos ^{2} \theta d \theta$ or $\int_{\alpha}^{\beta} \sin ^{2} \theta d \theta$

You'll learn about similar such integrals in Chapter 7, but for now, here's the key to finding the antiderivative:
Use the trig identities: $\left\{\begin{aligned} \cos ^{2} \theta & =\frac{1}{2}[1+\cos (2 \theta)] \\ \sin ^{2} \theta & =\frac{1}{2}[1-\cos (2 \theta)]\end{aligned}\right.$
Hence,
$\int \cos ^{2} \theta d \theta=\int \frac{1}{2}[1+\cos (2 \theta)] d \theta=\frac{1}{2} \theta+\frac{1}{4} \sin (2 \theta)$
$\int \sin ^{2} \theta d \theta=\int \frac{1}{2}[1-\cos (2 \theta)] d \theta=\frac{1}{2} \theta-\frac{1}{4} \sin (2 \theta)$

In case you're wondering how the above trig identities came about, start with the half-angle identities:

$$
\left\{\begin{array} { l }
{ \operatorname { c o s } (\frac { \phi } { 2 }) = \pm \sqrt { \frac { 1 + \operatorname { c o s } \phi } { 2 } } } \\
{ \operatorname { s i n } (\frac { \phi } { 2 }) = \pm \sqrt { \frac { 1 - \operatorname { c o s } \phi } { 2 } } }
\end{array} \Longrightarrow \left\{\begin{array} { l }
{ \operatorname { c o s } ^ { 2 } (\frac { \phi } { 2 }) = \frac { 1 + \operatorname { c o s } \phi } { 2 } } \\
{ \operatorname { s i n } ^ { 2 } (\frac { \phi } { 2 }) = \frac { 1 - \operatorname { c o s } \phi } { 2 } }
\end{array} \stackrel { C V } { \Longrightarrow } \left\{\begin{array}{l}
\cos ^{2} \theta=\frac{1+\cos (2 \theta)}{2} \\
\sin ^{2} \theta=\frac{1-\cos (2 \theta)}{2}
\end{array}(\mathrm{CV}) \theta:=\frac{\phi}{2} \Longleftrightarrow \phi=2 \theta\right.\right.\right.
$$

