Essential Logic & Set Theory

LOGIC NOTATION: Let \mathcal{P}, \mathcal{Q} denote mathematical statements

- (Logical Connectives) AND, OR, NOT (they function as you would expect them to)
- (Implication) $\mathcal{P} \implies \mathcal{Q}$ reads "If \mathcal{P} then \mathcal{Q} " or " \mathcal{P} implies \mathcal{Q} "
- (Logical Equivalence) $\mathcal{P} \iff \mathcal{Q}$ reads " \mathcal{P} is equivalent to \mathcal{Q} " or " \mathcal{P} if and only if \mathcal{Q} " or " $\mathcal{P} \implies \mathcal{Q}$ AND $\mathcal{Q} \implies \mathcal{P}$ "
- Converse of $(\mathcal{P} \implies \mathcal{Q})$ is $(\mathcal{Q} \implies \mathcal{P})$
- Contrapositive of $(\mathcal{P} \implies \mathcal{Q})$ is (NOT $\mathcal{Q} \implies$ NOT \mathcal{P})
- (Contradiction) \mathcal{P} AND (NOT \mathcal{P}) (In other words, a math statement that's both true and false, which is absurd!)
- e.g. Let \mathcal{P} be "x + 2 = 5" and \mathcal{Q} be "x = 3". Then, implication ($\mathcal{P} \implies \mathcal{Q}$) reads "If x + 2 = 5, then x = 3" its converse is "If x = 3, then x + 2 = 5" and its contrapositive is "If $x \neq 3$, then $x + 2 \neq 5$ "

SET NOTATION: Sets contain elements, but never duplicate elements.

- $x \in A \iff$ "x is an element of the set A" $x \notin A \iff$ "x is NOT an element of the set A"
- $A \subset B \iff$ "set A is a subset of B" \iff "set A is contained in set B" \iff $(x \in A \implies x \in B)$
- $x \in A \cup B \iff x \in A \text{ or } x \in B$ (union of two sets)
- $x \in A \cap B \iff x \in A \text{ and } x \in B$ (intersection of two sets)
- $x \in A \setminus B \iff x \in A \text{ and } x \notin B$ (subtraction of two sets)
- A, B are disjoint sets $\iff A \cap B = \emptyset$ (In other words, disjoint sets have no elements in common.)

SPECIAL SETS:

- $\emptyset \equiv \text{the empty set}$
- $\mathbb{N} \equiv \text{the set of natural numbers} := \{1, 2, 3, 4, 5, \cdots \}$
- $\mathbb{Z} \equiv$ the set of integers $\mathbb{Z}_+ \equiv$ the set of positive integers $\mathbb{Z}_- \equiv$ the set of negative integers
- $\mathbb{Q} \equiv$ the set of rationals $\mathbb{Q}_+ \equiv$ the set of positive rationals $\mathbb{Q}_- \equiv$ the set of negative rationals
- $\mathbb{R} \equiv$ the set of real numbers $\mathbb{R}_+ \equiv$ the set of positive reals $\mathbb{R}_- \equiv$ the set of negative reals
- Relationship among these sets of numbers : $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$

INTERVALS:

- $x \in (a, b) \iff a < x < b$ (Open interval)
- $x \in [a, b] \iff a \le x \le b$ (Closed interval)
- $x \in (a, b] \iff a < x \le b$
- $x \in [a, b) \iff a \le x < b$
- $x \in (-\infty, \infty) \iff x \in \mathbb{R} \iff$ "x is any real number"
- e.g. "n is any integer between $-\sqrt{3}$ and 3.5" $\iff n \in \mathbb{Z} \cap (-\sqrt{3}, 3.5) \iff n \in \{-1, 0, 1, 2, 3\}$
- e.g. "x is any positive real number" $\iff x \in \mathbb{R}_+ \iff x \in (0,\infty) \iff x > 0$
- e.g. "y is any real number except π and 100" $\iff y \in \mathbb{R} \setminus \{\pi, 100\} \iff y \in (-\infty, \pi) \cup (\pi, 100) \cup (100, \infty)$

LOGIC QUANTIFIERS:

- $\forall x \in A \iff$ "for all x in set A" \iff "for every x in set A"
- $\exists x \in A \iff$ "there exists at least one element x in set A" \iff "there exists an element x in set A"
- e.g. $(\forall w \in \mathbb{R}, \exists y \in \mathbb{Q} \text{ s.t. } w + y < 0) \iff$ "For every real w, there exists a rational y such that their sum is negative."