LOGIC NOTATION: Let \mathcal{P}, \mathcal{Q} denote mathematical statements

- (Logical Connectives) AND, OR, NOT (they function as you would expect them to)
- (Implication) $\mathcal{P} \Longrightarrow \mathcal{Q}$ reads "If \mathcal{P} then \mathcal{Q} " or " \mathcal{P} implies \mathcal{Q} "
- (Logical Equivalence) $\mathcal{P} \Longleftrightarrow \mathcal{Q}$ reads $" \mathcal{P}$ is equivalent to $\mathcal{Q} "$ or $" \mathcal{P}$ if and only if $\mathcal{Q} "$ or $" \mathcal{P} \Longrightarrow \mathcal{Q}$ AND $\mathcal{Q} \Longrightarrow \mathcal{P} "$
- Converse of $(\mathcal{P} \Longrightarrow \mathcal{Q})$ is $(\mathcal{Q} \Longrightarrow \mathcal{P})$
- Contrapositive of $(\mathcal{P} \Longrightarrow \mathcal{Q})$ is (NOT $\mathcal{Q} \Longrightarrow \operatorname{NOT} \mathcal{P}$)
- (Contradiction) \mathcal{P} AND (NOT $\mathcal{P}) \quad$ (In other words, a math statement that's both true and false, which is absurd!)
- e.g. Let \mathcal{P} be " $x+2=5$ " and \mathcal{Q} be " $x=3$ ". Then, implication $(\mathcal{P} \Longrightarrow \mathcal{Q})$ reads "If $x+2=5$, then $x=3$ " its converse is "If $x=3$, then $x+2=5$ " and its contrapositive is "If $x \neq 3$, then $x+2 \neq 5$ "

SET NOTATION: Sets contain elements, but never duplicate elements.

- $x \in A \Longleftrightarrow " x$ is an element of the set $A " \quad x \notin A \Longleftrightarrow " x$ is NOT an element of the set $A "$
$\bullet A \subset B \Longleftrightarrow "$ set A is a subset of $B " \Longleftrightarrow "$ set A is contained in set $B " \Longleftrightarrow(x \in A \Longrightarrow x \in B)$
- $x \in A \cup B \Longleftrightarrow x \in A$ or $x \in B \quad$ (union of two sets)
- $x \in A \cap B \Longleftrightarrow x \in A$ and $x \in B \quad$ (intersection of two sets)
- $x \in A \backslash B \Longleftrightarrow x \in A$ and $x \notin B \quad$ (subtraction of two sets)
- A, B are disjoint sets $\Longleftrightarrow A \cap B=\emptyset \quad$ (In other words, disjoint sets have no elements in common.)
- e.g. $A=\{1,2\}, B=\{2,3,4\}, C=\{5,7\} \Longrightarrow A \cup B=\{1,2,3,4\}, A \cap B=\{2\}, A \backslash B=\{1\}, B \cap C=\emptyset, B \backslash C=B$

SPECIAL SETS:

- $\emptyset \equiv$ the empty set
- $\mathbb{N} \equiv$ the set of natural numbers $:=\{1,2,3,4,5, \cdots\}$
- $\mathbb{Z} \equiv$ the set of integers $\quad \mathbb{Z}_{+} \equiv$ the set of positive integers $\quad \mathbb{Z}_{-} \equiv$ the set of negative integers
- $\mathbb{Q} \equiv$ the set of rationals $\quad \mathbb{Q}_{+} \equiv$ the set of positive rationals $\quad \mathbb{Q}_{-} \equiv$ the set of negative rationals
- $\mathbb{R} \equiv$ the set of real numbers $\quad \mathbb{R}_{+} \equiv$ the set of positive reals $\quad \mathbb{R}_{-} \equiv$ the set of negative reals
- Relationship among these sets of numbers : $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$

INTERVALS:

- $x \in(a, b) \Longleftrightarrow a<x<b \quad$ (Open interval)
- $x \in[a, b] \Longleftrightarrow a \leq x \leq b \quad$ (Closed interval)
- $x \in(a, b] \Longleftrightarrow a<x \leq b$
- $x \in[a, b) \Longleftrightarrow a \leq x<b$
- $x \in(-\infty, \infty) \Longleftrightarrow x \in \mathbb{R} \Longleftrightarrow " x$ is any real number"
- e.g. " n is any integer between $-\sqrt{3}$ and $3.5 " \Longleftrightarrow n \in \mathbb{Z} \cap(-\sqrt{3}, 3.5) \Longleftrightarrow n \in\{-1,0,1,2,3\}$
- e.g. " x is any positive real number" $\Longleftrightarrow x \in \mathbb{R}_{+} \Longleftrightarrow x \in(0, \infty) \Longleftrightarrow x>0$
- e.g. " y is any real number except π and $100 " \Longleftrightarrow y \in \mathbb{R} \backslash\{\pi, 100\} \Longleftrightarrow y \in(-\infty, \pi) \cup(\pi, 100) \cup(100, \infty)$

LOGIC QUANTIFIERS:

- $\forall x \in A \Longleftrightarrow$ "for all x in set $A " \Longleftrightarrow$ "for every x in set A "
- $\exists x \in A \Longleftrightarrow$ "there exists at least one element x in set $A " \Longleftrightarrow$ "there exists an element x in set A "
- e.g. $(\forall w \in \mathbb{R}, \exists y \in \mathbb{Q}$ s.t. $w+y<0) \Longleftrightarrow$ "For every real w, there exists a rational y such that their sum is negative."

