LINEAR SYSTEMS $(A \mathrm{x}=\mathrm{b}):$ INTRO, INTERPRETATION [LARSON 1.1]

- SCALAR: A scalar is a real \#: $0,1,-5,9 / 7,2.4, \sqrt[3]{7}, 6-\sqrt{2}, \log 7, \pi, e, \sin (\pi / 7), \ldots$

Complex numbers will never be considered in this course: $3 i, 5-2 i$ where $i:=\sqrt{-1}$

- LINEAR SYSTEMS:

where scalars $a_{11}, \ldots, a_{1 n}, a_{21}, \ldots, a_{2 n}, \ldots, a_{m 1}, \ldots, a_{m n} \in \mathbb{R}$
and the RHS scalars $b_{1}, \ldots, b_{m} \in \mathbb{R} . \quad[$ RHS \equiv "Right-Hand Side"]
The unknown variables are x_{1}, \ldots, x_{n}, and appear only to the first power.
i.e., a $m \times n$ linear system has m linear equations \& n unknown variables.
- NON-LINEAR SYSTEMS:

A system of equations which is not linear is called a nonlinear system.
Occasionally, it's possible to convert a nonlinear system into a linear system by a change of variables (CV):

$$
\text { CV: Let } u=1 / x \text { and } v=\sqrt{y} . \quad \text { Then: }\left\{\begin{array}{r}
4 / x-3 \sqrt{y}=1 \\
-1 / x+\pi \sqrt{y}=
\end{array} \Longleftrightarrow \Longleftrightarrow\left\{\begin{aligned}
4 u & -3 v=1 \\
-u+ & \pi v
\end{aligned}\right)\right.
$$

- UNDERDETERMINED, OVERDETERMINED, SQUARE LINEAR SYSTEMS:

$$
\begin{array}{lll}
\text { A } m \times n \text { linear system is underdetermined } & \Longleftrightarrow \text { there's more unknowns than equations }(m<n) \\
\text { A } m \times n \text { linear system is overdetermined } & \Longleftrightarrow \text { there's more equations than unknowns }(m>n) \\
\text { A } m \times n \text { linear system is square } & \Longleftrightarrow \text { there's as many equations as unknowns }(m=n)
\end{array}
$$

- QUALITATIVE SOLUTION POSSIBLITILES FOR LINEAR SYSTEMS:

For a $m \times n$ linear system, exactly one of the following is true:

- The linear system has a unique solution (i.e. one and only one solution)
- The linear system has infinitely many solutions
- The linear system has no solution
- CONSISTENT \& INCONSISTENT LINEAR SYSTEMS:

A $m \times n$ linear system is inconsistent \Longleftrightarrow it has no solution. Otherwise, the linear system is called consistent.

- MATRICES, ROW VECTORS, COLUMN VECTORS:
- A $m \times n$ matrix is an array of scalars arranged in m rows \& n columns.
- A square matrix is a matrix with as many rows as columns $(m=n)$.

$$
\text { e.g. }\left[\begin{array}{rcc}
1 & 4 & 0 \\
-1 & \pi & (8-3 \sqrt{5})
\end{array}\right]
$$

- A n-wide row vector is a $1 \times n$ matrix (i.e. only one row)

$$
\text { e.g. }\left[\begin{array}{cc}
\sqrt[3]{2} & 3 / 4 \\
1 & 0
\end{array}\right]
$$

$$
\text { e.g. }\left[\begin{array}{cccc}
-3 & 7 & 0 & \sqrt{3}
\end{array}\right]
$$

- A m-wide column vector is a $m \times 1$ matrix (i.e. only one column)

$$
\text { e.g. }\left[\begin{array}{c}
7 / 5 \\
1
\end{array}\right]
$$

- WRITING LINEAR SYSTEM IN MATRIX-VECTOR FORM:

The above prototype $m \times n$ linear system can be written compactly as $A \mathbf{x}=\mathbf{b}$, where A is $m \times n$ matrix, \mathbf{x} is a n-wide column vector, and \mathbf{b} is a m-wide column vector.

- WRITING LINEAR SYSTEM AS AUGMENTED MATRIX:

A linear system $A \mathbf{x}=\mathbf{b}$ can be written compactly as $[A \mid \mathbf{b}]:$ e.g. $\left\{\begin{aligned} & x-y \\ & 2 x+ \\ & 2= \\ & \sqrt[3]{9}\end{aligned} \Longleftrightarrow\left[\begin{array}{cc|c}1 & -1 & 5 \\ 2 & 1 & \sqrt[3]{9}\end{array}\right]\right.$

