LINEAR SYSTEMS (Ax = b): INTRO, INTERPRETATION [LARSON 1.1]

• **SCALAR:** A scalar is a real #: 0, 1, -5, 9/7, 2.4, $\sqrt[3]{7}$, $6 - \sqrt{2}$, $\log 7, \pi, e, \sin(\pi/7), \ldots$

Complex numbers will <u>never</u> be considered in this course: 3i, 5-2i where $i := \sqrt{-1}$

• LINEAR SYSTEMS:

		+	$a_{12}x_2$	+	•••	+	$a_{1n}x_n$	=	b_1
	$a_{21}x_1$	+	$a_{22}x_2$	+	•••	+	$a_{2n}x_n$	=	b_2
A $m \times n$ linear system in x_1, x_2, \ldots, x_n has the following form:	÷		:		÷		÷		÷
	$a_{m1}x_1$	+	$a_{m2}x_2$	+		+	$a_{mn}x_n$	=	b_{rr}

where scalars $a_{11}, ..., a_{1n}, a_{21}, ..., a_{2n}, ..., a_{m1}, ..., a_{mn} \in \mathbb{R}$

and the RHS scalars $b_1, \ldots, b_m \in \mathbb{R}$. $[RHS \equiv "Right-Hand Side"]$

The unknown variables are x_1, \ldots, x_n , and appear only to the first power.

i.e., a $m \times n$ linear system has m linear equations & n unknown variables.

• NON-LINEAR SYSTEMS:

A system of equations which is <u>not</u> linear is called a **nonlinear system**.

Occasionally, it's possible to convert a nonlinear system into a linear system by a change of variables (CV):

CV: Let $y = 1/r$ and $y = \sqrt{y}$	Then	$\int 4/x$	_	$3\sqrt{y}$	=	1	\xrightarrow{CV}	$\int 4u$	_	3v	=	1									
$\bigcirc V. \text{Let } u = 1/x \text{and } v = \sqrt{y}. 1$	1 mon.						i nem.	i nem.			$\int -1/x$	+	$\pi \sqrt{y}$	=	0		$\left(\begin{array}{c} -u \end{array} \right)$	+	πv	=	0

• UNDERDETERMINED, OVERDETERMINED, SQUARE LINEAR SYSTEMS:

A $m \times n$ linear system is underdetermined	\iff	there's more unknowns than equations $(m < n)$
A $m \times n$ linear system is overdetermined	\Leftrightarrow	there's more equations than unknowns $(m > n)$
A $m \times n$ linear system is square	\iff	there's as many equations as unknowns $\left(m=n\right)$

• QUALITATIVE SOLUTION POSSIBLITILES FOR LINEAR SYSTEMS:

For a $m \times n$ linear system, exactly one of the following is true:

- The linear system has a **unique solution** (i.e. one and only one solution)
- The linear system has infinitely many solutions
- The linear system has no solution

• CONSISTENT & INCONSISTENT LINEAR SYSTEMS:

A $m \times n$ linear system is **inconsistent** \iff it has **no solution**. Otherwise, the linear system is called **consistent**.

• MATRICES, ROW VECTORS, COLUMN VECTORS:

– A $m \times n$ matrix is an array of scalars arranged in m rows & n columns.	e.g.	$\left[\begin{array}{rrrr} 1 & 4 & 0 \\ -1 & \pi & (8 - 3\sqrt{5}) \end{array}\right]$
– A square matrix is a matrix with as many rows as columns $(m = n)$.	e.g.	$\left[\begin{array}{rrr} \sqrt[3]{2} & 3/4\\ 1 & 0 \end{array}\right]$
– A <i>n</i> -wide row vector is a $1 \times n$ matrix (i.e. only one row)	e.g.	$\left[\begin{array}{rrrr} -3 & 7 & 0 & \sqrt{3} \end{array}\right]$
– A <i>m</i> -wide column vector is a $m \times 1$ matrix (i.e. only one column)	e.g.	$\left[\begin{array}{c}7/5\\1\end{array}\right]$

• WRITING LINEAR SYSTEM IN MATRIX-VECTOR FORM:

The above prototype $m \times n$ linear system can be written compactly as $A\mathbf{x} = \mathbf{b}$,

where A is $m \times n$ matrix, x is a *n*-wide column vector, and b is a *m*-wide column vector.

• WRITING LINEAR SYSTEM AS AUGMENTED MATRIX:

A linear system $A\mathbf{x} = \mathbf{b}$ can be written compactly as $[A \mid \mathbf{b}]$. e.g.	x	—	y	=	5	\leftarrow	1	-1	5
M incar system $M = \mathbf{b}$ can be written compactly as $[M \mathbf{b}]$. e.g.	2x	+	y	=	$\sqrt[3]{9}$		2	1	$\sqrt[3]{9}$

©2015 Josh Engwer - Revised August 24, 2015