EX 1.2.3: Using Gauss-Jordan elimination, solve the linear system: $\left\{\begin{aligned} 4 x+4 y & =4 \\ 3 x+y & =1 \\ 2 x+y & =1 \\ 4 x+3 y & =3\end{aligned}\right.$
$[A \mid \mathbf{b}]=\left[\begin{array}{ll|l}4 & 4 & 4 \\ 3 & 1 & 1 \\ 2 & 1 & 1 \\ 4 & 3 & 3\end{array}\right] \xrightarrow{\left(\frac{1}{4}\right) R_{1} \rightarrow R_{1}}\left[\begin{array}{cc|c}\hline 1 & 1 & 1 \\ 3 & 1 & 1 \\ 2 & 1 & 1 \\ 4 & 3 & 3\end{array}\right] \xrightarrow[\substack{ \\(-4) R_{1}+R_{4} \rightarrow R_{4}}]{\substack{(-3) R_{1}+R_{2} \rightarrow R_{2} \\(-2) R_{1}+R_{3} \rightarrow R_{3}}}\left[\begin{array}{cc|c}\hline 1 & 1 & 1 \\ 0 & -2 & -2 \\ 0 & -1 & -1 \\ 0 & -1 & -1\end{array}\right]$
$\xrightarrow{\left(-\frac{1}{2}\right) R_{2} \rightarrow R_{2}}\left[\begin{array}{cc|c}\boxed{1} & 1 & 1 \\ 0 & \hline 1 & 1 \\ 0 & -1 & -1 \\ 0 & -1 & -1\end{array}\right] \xrightarrow[R_{2}+R_{4} \rightarrow R_{4}]{R_{2}+R_{3} \rightarrow R_{3}}\left[\begin{array}{cc|c}\boxed{1} & 1 & 1 \\ 0 & \boxed{1} & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \xrightarrow{(-1) R_{2}+R_{1} \rightarrow R_{1}}\left[\begin{array}{cc|c}\boxed{1} & 0 & 0 \\ 0 & \boxed{1} & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]=[\operatorname{RREF}(A) \mid \widetilde{\mathbf{b}}]$
Notice that rows $3 \& 4$ of $\operatorname{RREF}(A)$ are TAUTOLOGIES, since they each translate to the equation $0=0$.
Remember, nothing special is done when encountering TAUTOLOGIES - just think "Oh, that's nice." and carry on.
Identify the free \& fixed variables:
Every column of $\operatorname{RREF}(A)$ has pivot \Longrightarrow all unknowns x, y are fixed variables (there are no free variables)
Qualitatively describe the solution(s) to the linear system:
Since there's no CONTRADICTION's \& every unknown is a fixed variable, the linear system has a unique solution.

Find the solution(s) to the linear system:
Translate $[\operatorname{RREF}(A) \mid \widetilde{\mathbf{b}}]$ into an equivalent linear system:

$$
\left[\begin{array}{cc|c}
\boxed{1} & 0 & 0 \\
0 & \boxed{1} & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \Longleftrightarrow\left\{\begin{array} { l l l }
{ x } & { = } & { 0 } \\
{ y } & { = } & { 1 } \\
{ 0 } & { = } & { 0 } \\
{ 0 } & { = } & { 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x=0 \\
y=1
\end{array}\right.\right.
$$

\therefore (TUPLE FORM) $(x, y)=(0,1)$ OR (COLUMN VECTOR FORM) $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]$

$$
[A \mid \mathbf{b}]=\left[\begin{array}{cc|c}
-1 & 3 & -1 \\
3 & -4 & -1 \\
-3 & 2 & 4 \\
-9 & 6 & -3
\end{array}\right] \xrightarrow{(-1) R_{1} \rightarrow R_{1}}\left[\begin{array}{cc|c}
\boxed{1} & -3 & 1 \\
3 & -4 & -1 \\
-3 & 2 & 4 \\
-9 & 6 & -3
\end{array}\right] \xrightarrow[(9) R_{1}+R_{4} \rightarrow R_{4}]{\substack{(-3) R_{1}+R_{2} \rightarrow R_{2} \\
(3) R_{1}+R_{3} \rightarrow R_{3}}}\left[\begin{array}{cc|c}
\begin{array}{|cc|}
1 & -3 \\
0 & 5
\end{array} & 1 \\
0 & -7 & 7 \\
0 & -21 & 6
\end{array}\right]
$$

\therefore Since there's at least one CONTRADICTION, the linear system has no solution

EX 1.2.5: Using Gauss-Jordan elimination, solve the linear system: $\left\{\begin{aligned}-x_{1}+2 x_{2} & =-1 \\ x_{1}-2 x_{2} & =1 \\ 3 x_{1}-6 x_{2} & =3 \\ -4 x_{1}+8 x_{2} & =-4\end{aligned}\right.$

Notice that rows $2,3,4$ of $\operatorname{RREF}(A)$ are TAUTOLOGIES, since they each translate to the equation $0=0$.
Remember, nothing special is done when encountering a TAUTOLOGY - just think "Oh, that's nice." and carry on.
Identify the free \& fixed variables:
$\begin{array}{lll}\text { Column } 2 \text { of } \operatorname{RREF}(A) \text { has no pivot } & \Longrightarrow & \text { Unknown } x_{2} \text { is a free variable. } \\ \text { Column } 1 \text { of } \operatorname{RREF}(A) \text { has a pivot } & \Longrightarrow \quad \text { Unknown } x_{1} \text { is a fixed variable }\end{array}$

Qualitatively describe the solution(s) to the linear system:
Since there's no CONTRADICTIONS \& there's at least one free variable, there are infinitely many solutions.
Since there's 2 unknowns $\left(x_{1}, x_{2}\right)$ \& one free variable $\left(x_{2}\right)$, all solutions lie on a line in 2 -dimensional space.

Find the solution(s) to the linear system:
Assign a unique parameter to each free variable: Let $x_{2}=t \in \mathbb{R}$
Express all fixed variables in terms of the parameters by translating $[\operatorname{RREF}(A) \mid \widetilde{\mathbf{b}}]$ into equivalent linear system:

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
\hline 1 & -2 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \Longleftrightarrow\left\{\begin{array}{rr}
\left.x_{1}-\begin{array}{c}
2 x_{2}
\end{array}\right) \\
0 & = \\
0 & = \\
0 & =
\end{array}\right.} \\
& \therefore \text { (TUPLE FORM) } \\
& \left(x_{1}, x_{2}\right)=(1+2 t, t)
\end{aligned} \Longleftrightarrow x_{1}-2 t=1 \Longleftrightarrow x_{1}=1+2 t .
$$

These two forms of the solution are shown because each WeBWorK problem will demand one form or the other. On exams, either form is fine with me.

IMPORTANT: Since the (1,1)-entry of $[A \mid \mathbf{b}]$ is zero, perform a SWAP first!

$$
\begin{aligned}
& {[A \mid \mathbf{b}]=\left[\begin{array}{cccc|c}
0 & 0 & 0 & -3 & 2 \\
-2 & 0 & -4 & 4 & 1 \\
2 & -1 & 4 & -3 & -1
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{3}}\left[\begin{array}{cccc|c}
2 & -1 & 4 & -3 & -1 \\
-2 & 0 & -4 & 4 & 1 \\
0 & 0 & 0 & -3 & 2
\end{array}\right]} \\
& \xrightarrow{R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{cccc|c}
2 & -1 & 4 & -3 & -1 \\
0 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & -3 & 2
\end{array}\right] \xrightarrow[\substack{ \\
\left(-\frac{1}{3}\right) R_{3} \rightarrow R_{3}}]{\substack{\left(\frac{1}{2}\right) R_{1} \rightarrow R_{1} \\
(-1) R_{2} \rightarrow R_{2}}}\left[\begin{array}{cccc|c}
\hline 1 & -1 / 2 & 2 & -3 / 2 & -1 / 2 \\
0 & \boxed{1} & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & -2 / 3
\end{array}\right] \\
& \xrightarrow[\left(\frac{3}{2}\right) R_{3}+R_{1} \rightarrow R_{1}]{R_{3}+R_{2} \rightarrow R_{2}}\left[\begin{array}{cccc|c}
1 & -1 / 2 & 2 & 0 & -3 / 2 \\
0 & \boxed{1} & 0 & 0 & -2 / 3 \\
0 & 0 & 0 & 1 & -2 / 3
\end{array}\right] \xrightarrow{\left(\frac{1}{2}\right) R_{2}+R_{1} \rightarrow R_{1}}\left[\begin{array}{cccc|c}
\boxed{1} & 0 & 2 & 0 & -11 / 6 \\
0 & \boxed{1} & 0 & 0 & -2 / 3 \\
0 & 0 & 0 & 1 & -2 / 3
\end{array}\right]=[\operatorname{RREF}(A) \mid \widetilde{\mathbf{b}}]
\end{aligned}
$$

Identify the free \& fixed variables:
Column 3 of $\operatorname{RREF}(A)$ has no pivot $\quad \Longrightarrow \quad$ Unknown x_{3} is a free variable.
Columns $1,2,4$ of $\operatorname{RREF}(A)$ each have a pivot \Longrightarrow Unknowns x_{1}, x_{2}, x_{4} are fixed variables.
Qualitatively describe the solution(s) to the linear system:
Since there's no CONTRADICTIONS \& there's at least one free variable, there are infinitely many solutions.
Since there's 4 unknowns $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \&$ one free variable $\left(x_{3}\right)$, all solutions lie on a line in 4 -dimensional space.

Find the solution(s) to the linear system:
Assign a unique parameter to each free variable: Let $x_{3}=t \in \mathbb{R}$
Express all fixed variables in terms of the parameters by translating $[\operatorname{RREF}(A) \mid \widetilde{\mathbf{b}}]$ into equivalent linear system:

$$
\begin{aligned}
& \therefore \text { (TUPLE FORM) }\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(-\frac{11}{6}-2 t,-\frac{2}{3}, t,-\frac{2}{3}\right) \\
& \text { OR } \\
& \longrightarrow \\
& \therefore \text { (COLUMN VECTOR FORM) }\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-\frac{11}{6}-2 t \\
-\frac{2}{3} \\
t \\
-\frac{2}{3}
\end{array}\right]=\left[\begin{array}{c}
-\frac{11}{6} \\
-\frac{2}{3} \\
0 \\
-\frac{2}{3}
\end{array}\right]+t\left[\begin{array}{c}
-2 \\
0 \\
1 \\
0
\end{array}\right]
\end{aligned}
$$

These two forms of the solution are shown because each WeBWorK problem will demand one form or the other.
On exams, either form is fine with me.

$[A \mid \mathbf{b}]=\left[\begin{array}{ccc|c}\boxed{1} & -1 & 0 & 0 \\ -2 & 0 & -2 & 0 \\ 0 & -1 & -1 & 0\end{array}\right] \xrightarrow{2 R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{ccc|c}\begin{array}{|cc|}1 & -1 \\ 0 & 0 \\ 0 & -2\end{array} & -2 & 0 \\ 0 & -1 & -1 & 0\end{array}\right] \xrightarrow{\left(-\frac{1}{2}\right) R_{2} \rightarrow R_{2}}\left[\begin{array}{ccc|c}\boxed{1} & -1 & 0 & 0 \\ 0 & \boxed{1} & 1 & 0 \\ 0 & -1 & -1 & 0\end{array}\right]$
$\xrightarrow{R_{2}+R_{3} \rightarrow R_{3}}\left[\begin{array}{ccc|c}\boxed{1} & -1 & 0 & 0 \\ 0 & \boxed{1} & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \xrightarrow{R_{2}+R_{1} \rightarrow R_{1}}\left[\begin{array}{ccc|c}\boxed{1} & 0 & 1 & 0 \\ 0 & \boxed{1} & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]=[\operatorname{RREF}(A) \mid \widetilde{\mathbf{b}}]$
Notice that row 3 of $\operatorname{RREF}(A)$ is a TAUTOLOGY, since it translates to the equation $0=0$.
Remember, nothing special is done when encountering a TAUTOLOGY - just think "Oh, that's nice." and carry on.

Identify the free \& fixed variables:
Column 3 of $\operatorname{RREF}(A)$ has no pivot $\quad \Longrightarrow \quad$ Unknown x_{3} is a free variable.
Columns 1,2 of $\operatorname{RREF}(A)$ each have a pivot \Longrightarrow Unknowns x_{1}, x_{2} are fixed variables.
Qualitatively describe the solution(s) to the linear system:
Since there's no CONTRADICTIONS \& there's at least one free variable, there are infinitely many solutions.
Since there's 3 unknowns $\left(x_{1}, x_{2}, x_{3}\right)$ \& one free variable $\left(x_{3}\right)$, all solutions lie on a line in $\mathbf{3}$-dimensional space.
Find the solution(s) to the linear system:
Assign a unique parameter to each free variable: Let $x_{3}=t \in \mathbb{R}$
Express all fixed variables in terms of the parameters by translating $[\operatorname{RREF}(A) \mid \widetilde{\mathbf{b}}]$ into equivalent linear system:

$$
\left[\begin{array}{ccc|c}
\boxed{1} & 0 & 1 & 0 \\
0 & \boxed{1} & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Longleftrightarrow\left\{\begin{array} { l l l }
{ x _ { 1 } } & { \begin{array} { r }
{ + } \\
{ x _ { 3 } }
\end{array} } & { = 0 } \\
{ } & { x _ { 2 } } & { x _ { 3 } } \\
{ + } & { 0 } \\
{ 0 } & { = } & { 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x_{1}+t=0 \\
x_{2}+t=
\end{array}=0.0 \begin{cases}x_{1} & = \\
x_{2} & -t \\
& -t\end{cases}\right.\right.
$$

$$
\therefore \quad \text { (TUPLE FORM) }\left(x_{1}, x_{2}, x_{3}\right)=(-t,-t, t)
$$

$$
\longrightarrow \text { OR }-
$$

$$
\therefore \text { (COLUMN VECTOR FORM) }\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-t \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]
$$

These two forms of the solution are shown because each WeBWorK problem will demand one form or the other. On exams, either form is fine with me.

$$
[A \mid \mathbf{b}]=\left[\begin{array}{ccc|c}
\left.\begin{array}{|c|c|c}
1 & 2 & -3 \\
2 & 4 & -6 \\
0 \\
-3 & -6 & 9
\end{array} \right\rvert\,
\end{array}\right] \xrightarrow[3 R_{1}+R_{3} \rightarrow R_{3}]{(-2) R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{ccc|c}
\begin{array}{|ccc}
1 & 2 & -3 \\
0 & 0 & 0 \\
0 & 0 \\
0 & 0 & 0
\end{array} 0
\end{array}\right]=[\operatorname{RREF}(A) \mid \widetilde{\mathbf{b}}]
$$

Notice that rows $2 \& 3$ of $\operatorname{RREF}(A)$ are TAUTOLOGIES, since they each translate to the equation $0=0$.
Remember, nothing special is done when encountering TAUTOLOGIES - just think "Oh, that's nice." and carry on.
Identify the free \& fixed variables:
Columns 2,3 of $\operatorname{RREF}(A)$ each have no pivot $\Longrightarrow \quad$ Unknowns x_{2}, x_{3} are free variables.
Columns 1 of $\operatorname{RREF}(A)$ has a pivot $\quad \Longrightarrow \quad$ Unknown x_{1} is a fixed variable.
Qualitatively describe the solution(s) to the linear system:
Since there's no CONTRADICTIONS \& there's at least one free variable, there are infinitely many solutions.
Since there's $\mathbf{3}$ unknowns $\left(x_{1}, x_{2}, x_{3}\right)$ \& two free variables $\left(x_{2}, x_{3}\right)$, all solutions lie on a plane in $\mathbf{3}$-dimensional space.
Find the solution(s) to the linear system:

Assign a unique parameter to each free variable:
Let $x_{2}=s \in \mathbb{R}$
Let $x_{3}=t \in \mathbb{R}$
Express all fixed variables in terms of the parameters by translating $[\operatorname{RREF}(A) \mid \widetilde{\mathbf{b}}]$ into equivalent linear system:

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
\boxed{1} & 2 & -3 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Longleftrightarrow\left\{\begin{array}{rl}
x_{1}+2 x_{2}-3 x_{3} & =0 \\
& 0 \\
& 0 \\
& =0
\end{array} \Longleftrightarrow x_{1}+2 s-3 t=0 \Longleftrightarrow x_{1}=-2 s+3 t\right.} \\
& \therefore \quad\left(x_{1}, x_{2}, x_{3}\right)=(-2 s+3 t, s, t) \text { OR }\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-2 s+3 t \\
s \\
t
\end{array}\right]=s\left[\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

