SOLVING Ax = b: GAUSS-JORDAN ELIMINATION [LARSON 1.2]

• EQUIVALENT LINEAR SYSTEMS:

- Two $m \times n$ linear systems are equivalent \iff both systems have the exact same solution sets.
- When solving a linear system $A\mathbf{x} = \mathbf{b}$, one should rewrite the system into a <u>simpler</u> equivalent system. This can achieved using elementary row operations applied to the corresponding augmented matrix $[A \mid \mathbf{b}]$.

• ELEMENTARY ROW OPERATIONS:

* (SWAP) $[R_i \leftrightarrow R_j]$ Swap row *i* & row *j*:

e.g. Swap row 2 & row 3:
$$\begin{bmatrix} 3 & 4 & 0 \\ -1 & 0 & 1 \\ 2 & 7 & 9 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{bmatrix} 3 & 4 & 0 \\ 2 & 7 & 9 \\ -1 & 0 & 1 \end{bmatrix}$$

★ (SCALE) $[\alpha R_j \to R_j]$ Multiply row j by a non-zero scalar α:

	3	4	0]		(-2)(3)	(-2)(4)	(-2)(0)		-6	-8	0
e.g. Multiply row 1 by -2 :	-1	0	1	$\xrightarrow{(-2)R_1 \to R_1}$	-1	0	1	=	-1	0	1
	2	7	9		2	7	9		2	7	9

* (COMBINE) $[\alpha R_i + R_j \rightarrow R_j]$ Add scalar multiple α of row *i* to row *j*:

e.g. Add
$$(3 \times \text{row } 1)$$
 to row 3:
$$\begin{bmatrix} 3 & 4 & 0 \\ -1 & 0 & 1 \\ 2 & 7 & 9 \end{bmatrix} \xrightarrow{3R_1 + R_3 \to R_3} \begin{bmatrix} 3 & 4 & 0 \\ -1 & 0 & 1 \\ 3(3) + 2 & 3(4) + 7 & 3(0) + 9 \end{bmatrix} = \begin{bmatrix} 3 & 4 & 0 \\ -1 & 0 & 1 \\ 11 & 19 & 9 \end{bmatrix}$$

• REDUCED ROW-ECHELON FORM (RREF) OF A MATRIX:

- An matrix is in reduced row-echelon form (RREF) if the following are all true:
 - * Any rows consisting entirely of zeros occur below all non-zero rows.
 - * For each non-zero row, the first (leftmost) non-zero entry is 1 (and is called a pivot or leading one.)
 - * For two successive non-zero rows, the pivot in the higher row is farther to the left than the pivot in lower row.
 - $\ast\,$ Every column that has a pivot has zeros in every entry above & below its pivot.
 - * For linear systems, the (1, 1)-entry must be a pivot. ["(i, j)-entry" means " i^{th} row, j^{th} column of matrix"]
- The RREF of an <u>augmented matrix</u> seemingly may have a "pivot" in the <u>last column</u>, but it's not really a pivot! However, still zero out entries above & below such a "pivot" in the last column.
- Examples of augmented matrices in RREF (pivots are boxed):

[1	0	0	3		1	6	0	0	1	1	6	2	0		1	0	0	1	1	-3	0	1	1	-3	4
0	1	0	5	,	0	0	1	0	,	0	0	0	1	,	0	1	0	,	0	0	1	,	0	0	0
[0	0	1	1 _		0	0	0	1		0	0	0	0		0	0	1.		0	0	0		0	0	0

• SOLVING $m \times n$ LINEAR SYSTEM Ax = b USING GAUSS-JORDAN ELIMINATION (PROCEDURE):

- (1) Form **augmented matrix** $[A | \mathbf{b}]$
- (2) SWAP/SCALE/COMBINE [$A \mid \mathbf{b}$] as needed to zero-out entries below pivots, left-to-right
- (3) SWAP/SCALE/COMBINE $[A | \mathbf{b}]$ as needed to zero-out entries above pivots, right-to-left
- (4) Translate augmented matrix [RREF(A) | b] into corresponding equivalent linear system:
 If any rows of [RREF(A) | b] translate to a CONTRADICTION (e.g. 0 = 1) then system has no solution If any rows of [RREF(A) | b] translate to a TAUTOLOGY (e.g. 0 = 0), then proceed as usual to STEP (5)
- (5) Identify all fixed variables & free variables:
 Each column of RREF(A) that contains a pivot corresponds to a fixed variable
 Each column of RREF(A) that contains no pivot corresponds to a free variable
- (6) Assign each free variable a unique parameter
- (7) Express each fixed variable in terms of the parameters
- (8) Write out solution in either tuple form or column vector form

SOLVING Ax = b: GAUSS-JORDAN ELIMINATION [LARSON 1.2]

• <u>TUPLE FORM OF A SOLUTION:</u> $(x_1, x_2) = (3, -5), \quad (x_1, x_2, x_3) = (3 - 6s - 2t, s, t)$

• COLUMN VECTOR FORM OF A SOLUTION:

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -5 \end{bmatrix}, \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3-6s-2t \\ s \\ t \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} -6 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$$

• GAUSS-JORDAN ELIMINATION $(3 \times 2 \text{ PROTOTYPE POSSIBILITIES})$:

* indicates possibly non-zero entries Pivots are boxed:

$$\begin{bmatrix} A \mid \mathbf{b} \end{bmatrix} = \begin{bmatrix} * & * \mid * \\ * & * \mid * \end{bmatrix} \xrightarrow{Gauss-Jordan} \begin{bmatrix} \boxed{1} & 0 & | * \\ 0 & \boxed{1} & | * \\ 0 & 0 & | 0 \end{bmatrix} = \begin{bmatrix} \operatorname{RREF}(A) \mid \widetilde{\mathbf{b}} \end{bmatrix}$$
$$\begin{bmatrix} A \mid \mathbf{b} \end{bmatrix} = \begin{bmatrix} * & * \mid * \\ * & * \mid * \\ * & * \mid * \end{bmatrix} \xrightarrow{Gauss-Jordan} \begin{bmatrix} \boxed{1} & 0 & | 0 \\ 0 & \boxed{1} & | 0 \\ 0 & 0 & | 1 \end{bmatrix} = \begin{bmatrix} \operatorname{RREF}(A) \mid \widetilde{\mathbf{b}} \end{bmatrix}$$
$$\begin{bmatrix} A \mid \mathbf{b} \end{bmatrix} = \begin{bmatrix} * & * \mid * \\ * & * \mid * \\ * & * \mid * \end{bmatrix} \xrightarrow{Gauss-Jordan} \begin{bmatrix} \boxed{1} & * \mid * \\ 0 & 0 & 0 \\ 0 & 0 & | 0 \end{bmatrix} = \begin{bmatrix} \operatorname{RREF}(A) \mid \widetilde{\mathbf{b}} \end{bmatrix}$$
$$\begin{bmatrix} A \mid \mathbf{b} \end{bmatrix} = \begin{bmatrix} * & * \mid * \\ * & * \mid * \\ * & * \mid * \end{bmatrix} \xrightarrow{Gauss-Jordan} \begin{bmatrix} \boxed{1} & * \mid * \\ 0 & 0 & 0 \\ 0 & 0 & | 0 \end{bmatrix} = \begin{bmatrix} \operatorname{RREF}(A) \mid \widetilde{\mathbf{b}} \end{bmatrix}$$
$$\begin{bmatrix} A \mid \mathbf{b} \end{bmatrix} = \begin{bmatrix} * & * \mid * \\ * & * \mid * \\ * & * \mid * \end{bmatrix} \xrightarrow{Gauss-Jordan} \begin{bmatrix} \boxed{1} & * \mid 0 \\ 0 & 0 & 1 \\ 0 & 0 & | 0 \end{bmatrix} = \begin{bmatrix} \operatorname{RREF}(A) \mid \widetilde{\mathbf{b}} \end{bmatrix}$$

• [PROTIP] DELAY THE ONSLAUGHT OF FRACTIONS (PART 1):

Sometimes an augmented matrix may have **fractions** in some entries:

$$\begin{bmatrix} 3 & 1/2 & 1/5 \\ 1/3 & 2 & 4 \end{bmatrix} \xrightarrow{\begin{pmatrix} 1 \\ 3 \end{pmatrix} R_1 \to R_1} \begin{bmatrix} 1 & 1/6 & 1/15 \\ 1/3 & 2 & 4 \end{bmatrix}$$

This will cause Gauss-Jordan to involve tedious fraction arithmetic!

To avoid dealing with fractions (at least for a few steps), **SCALE** each row with fractions by its **common denominator**:

$$\begin{bmatrix} 3 & 1/2 & 1/5 \\ 1/3 & 2 & 4 \end{bmatrix} \xrightarrow{10R_1 \to R_1} \begin{bmatrix} 30 & 5 & 2 \\ 1 & 6 & 12 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 1 & 6 & 12 \\ 30 & 5 & 2 \\ 1 & 6 & 12 \end{bmatrix}$$

• [PROTIP] DELAY THE ONSLAUGHT OF FRACTIONS (PART 2):

Sometimes a SCALE to create a pivot may cause **fractions** in other entries:

$$\begin{bmatrix} 3 & 4 & 8 \\ 2 & 3 & 0 \\ 5 & 6 & 3 \end{bmatrix} \xrightarrow{\begin{pmatrix} \frac{1}{3} \end{pmatrix} R_1 \to R_1} \begin{bmatrix} 1 & \frac{4}{3} & \frac{8}{3} \\ 2 & 3 & 0 \\ 5 & 6 & 3 \end{bmatrix}$$

This will cause later Gauss-Jordan steps to involve tedious fraction arithmetic!

To avoid dealing with fractions (at least for a few steps), zero-out each entry below a would-be pivot by **SCALE**-ing **each pair of rows** such that the two entries are **identical**:

$$\begin{bmatrix} 3 & 4 & 8 \\ 2 & 3 & 0 \\ 5 & 6 & 3 \end{bmatrix} \xrightarrow{2R_1 \to R_1} \begin{bmatrix} 6 & 8 & 16 \\ 6 & 9 & 0 \\ 5 & 6 & 3 \end{bmatrix} \xrightarrow{(-1)R_1 + R_2 \to R_2} \begin{bmatrix} 6 & 8 & 16 \\ 0 & 1 & -16 \\ 5 & 6 & 3 \end{bmatrix} \xrightarrow{(\frac{1}{2})R_1 \to R_1} \begin{bmatrix} 15 & 20 & 40 \\ 0 & 1 & -16 \\ 15 & 18 & 9 \end{bmatrix} \xrightarrow{(-1)R_1 + R_2 \to R_2} \begin{bmatrix} 6 & 8 & 16 \\ 0 & 1 & -16 \\ 15 & 6 & 3 \end{bmatrix} \xrightarrow{(\frac{1}{2})R_1 \to R_1} \begin{bmatrix} 15 & 20 & 40 \\ 0 & 1 & -16 \\ 15 & 18 & 9 \end{bmatrix} \xrightarrow{(-1)R_1 + R_3 \to R_3} \begin{bmatrix} 15 & 20 & 40 \\ 0 & 1 & -16 \\ 0 & -2 & -31 \end{bmatrix}$$
$$\xrightarrow{(\frac{1}{15})R_1 \to R_1} \begin{bmatrix} 1 & 4/3 & 8/3 \\ 0 & 1 & -16 \\ 0 & -2 & -31 \end{bmatrix} \begin{pmatrix} \text{Again, fractions may be inevitable,} \\ \text{but at least they can be delayed.} \\ \text{NOTE: entries may become quite large!} \end{pmatrix}$$

©2015 Josh Engwer – Revised August 23, 2015

	$\int x_1$	_	$2x_2$	—	$2x_3$	+	$2x_4$	=	0
<u>EX 1.2.1:</u> Using Gauss-Jordan elimination, solve the linear system:	$\begin{cases} -x_1 \end{cases}$	_	$2x_2$			+	x_4	=	1
	$2x_1$	_	$4x_2$	_	$4x_3$	+	$4x_4$	=	3

	(a	c +	y	+	2z	+	2w	=	3	
$\boxed{\mathbf{EX 1.2.2:}}$ Using Gauss-Jordan elimination, solve the linear system: \langle	а	c +	2y	+	z	+	2w	=	1	
	-2x	c –	2y	_	4z	_	4w	=	-6	

		4x	+	4y	=	4
EX 1 2 3.	Using Gauss Jordan alimination, solve the linear system.	3x	+	y	=	1
<u>EA 1.2.3;</u>	Using Gauss-Jordan eminiation, solve the inlear system.	2x	+	y	=	1
		4x	+	3y	=	3

($-x_1$	+	$3x_2$	=	-1
FX 1.2.4 Using Cauge Jordan elimination, solve the linear system:	$3x_1$	_	$4x_2$	=	-1
<u>EX 1.2.4.</u> Using Gauss-Jordan eminiation, solve the inlear system.	$-3x_{1}$	+	$2x_2$	=	4
	$-9x_{1}$	+	$6x_2$	=	-3

	$(-x_1)$	+	$2x_2$	=	-1
FX 1 2 5. Using Cause Jordan elimination, solve the linear system.	x_1	_	$2x_2$	=	1
<u>EX 1.2.0</u> Using Gauss-Jordan eminiation, solve the linear system.	$3x_1$	_	$6x_2$	=	3
	$-4x_1$	+	$8x_2$	=	-4

		ſ							$-3x_{4}$	=	2
EX 1.2.6:	Using Gauss-Jordan elimination, solve the linear system: \cdot	{ .	$-2x_{1}$			_	$4x_3$	$^+$	$4x_4$	=	1
		l	$2x_1$	_	x_2	+	$4x_3$	_	$3x_4$	=	-1

		ſ	x_1	_	x_2			=	0
EX 1.2.7:	Using Gauss-Jordan elimination, solve the linear system:	ł	$-2x_{2}$			_	$2x_3$	=	0
		l		_	x_2	_	x_3	=	0

	$\int x_1$	+	$2x_2$	_	$3x_3$	=	0
<u>EX 1.2.8</u> : Using Gauss-Jordan elimination, solve the linear system: \langle	$2x_1$	+	$4x_2$	_	$6x_3$	=	0
	$(-3x_1)$	_	$6x_2$	+	$9x_3$	=	0