SOLVING $A \mathrm{x}=\mathrm{b}:$ GAUSS-JORDAN ELIMINATION [LARSON 1.2]

- EQUIVALENT LINEAR SYSTEMS:
- Two $m \times n$ linear systems are equivalent \Longleftrightarrow both systems have the exact same solution sets.
- When solving a linear system $A \mathbf{x}=\mathbf{b}$, one should rewrite the system into a simpler equivalent system.

This can achieved using elementary row operations applied to the corresponding augmented matrix [$A \mid \mathbf{b}$].

- ELEMENTARY ROW OPERATIONS:

$\star \quad$ (SWAP) $\left[R_{i} \leftrightarrow R_{j}\right]$ Swap row $i \&$ row j :

$$
\text { e.g. Swap row } 2 \text { \& row 3: }\left[\begin{array}{rr|r}
3 & 4 & 0 \\
-1 & 0 & 1 \\
2 & 7 & 9
\end{array}\right] \xrightarrow{R_{2} \leftrightarrow R_{3}}\left[\begin{array}{rr|r}
3 & 4 & 0 \\
2 & 7 & 9 \\
-1 & 0 & 1
\end{array}\right]
$$

$\star \quad$ (SCALE) $\quad\left[\alpha R_{j} \rightarrow R_{j}\right]$ Multiply row j by a non-zero scalar α :

$$
\text { e.g. Multiply row } 1 \text { by }-2 \text { : }\left[\begin{array}{rr|r}
3 & 4 & 0 \\
-1 & 0 & 1 \\
2 & 7 & 9
\end{array}\right] \xrightarrow{(-2) R_{1} \rightarrow R_{1}}\left[\begin{array}{rr|r}
(-2)(3) & (-2)(4) & (-2)(0) \\
-1 & 0 & 1 \\
2 & 7 & 9
\end{array}\right]=\left[\begin{array}{rr|r}
-6 & -8 & 0 \\
-1 & 0 & 1 \\
2 & 7 & 9
\end{array}\right]
$$

$\star \quad$ (COMBINE) $\left[\alpha R_{i}+R_{j} \rightarrow R_{j}\right]$ Add scalar multiple α of row i to row j :

$$
\text { e.g. Add (3×row 1) to row 3: }\left[\begin{array}{rr|r}
3 & 4 & 0 \\
-1 & 0 & 1 \\
2 & 7 & 9
\end{array}\right] \xrightarrow{3 R_{1}+R_{3} \rightarrow R_{3}}\left[\begin{array}{rr|r}
3 & 4 & 0 \\
-1 & 0 & 1 \\
3(3)+2 & 3(4)+7 & 3(0)+9
\end{array}\right]=\left[\begin{array}{rr|r}
3 & 4 & 0 \\
-1 & 0 & 1 \\
11 & 19 & 9
\end{array}\right]
$$

- REDUCED ROW-ECHELON FORM (RREF) OF A MATRIX:
- An matrix is in reduced row-echelon form (RREF) if the following are all true:
* Any rows consisting entirely of zeros occur below all non-zero rows.
* For each non-zero row, the first (leftmost) non-zero entry is $\mathbf{1}$ (and is called a pivot or leading one.)
* For two successive non-zero rows, the pivot in the higher row is farther to the left than the pivot in lower row.
* Every column that has a pivot has zeros in every entry above \& below its pivot.
* For linear systems, the (1,1)-entry must be a pivot. [" (i, j)-entry" means " $i^{\text {th }}$ row, $j^{\text {th }}$ column of matrix"]
- The RREF of an augmented matrix seemingly may have a "pivot" in the last column, but it's not really a pivot! However, still zero out entries above \& below such a "pivot" in the last column.
- Examples of augmented matrices in RREF (pivots are boxed):
- SOLVING $m \times n$ LINEAR SYSTEM $A \mathbf{x}=\mathbf{b}$ USING GAUSS-JORDAN ELIMINATION (PROCEDURE):
(1) Form augmented matrix $[A \mid \mathbf{b}]$
(2) SWAP/SCALE/COMBINE $[A \mid \mathbf{b}]$ as needed to zero-out entries below pivots, left-to-right
(3) SWAP/SCALE/COMBINE $[A \mid \mathbf{b}]$ as needed to zero-out entries above pivots, right-to-left
(4) Translate augmented matrix $[\operatorname{RREF}(A) \mid \widetilde{\mathbf{b}}]$ into corresponding equivalent linear system:

If any rows of $[\operatorname{RREF}(A) \mid \widetilde{\mathbf{b}}]$ translate to a CONTRADICTION (e.g. $0=1$) then system has no solution
If any rows of $[\operatorname{RREF}(A) \mid \widetilde{\mathbf{b}}]$ translate to a TAUTOLOGY (e.g. $0=0$), then proceed as usual to STEP (5)
(5) Identify all fixed variables \& free variables:

Each column of $\operatorname{RREF}(A)$ that contains a pivot corresponds to a fixed variable
Each column of $\operatorname{RREF}(A)$ that contains no pivot corresponds to a free variable
(6) Assign each free variable a unique parameter
(7) Express each fixed variable in terms of the parameters
(8) Write out solution in either tuple form or column vector form

SOLVING $A \mathrm{x}=\mathrm{b}:$ GAUSS-JORDAN ELIMINATION [LARSON 1.2]

- TUPLE FORM OF A SOLUTION: $\quad\left(x_{1}, x_{2}\right)=(3,-5), \quad\left(x_{1}, x_{2}, x_{3}\right)=(3-6 s-2 t, s, t)$
- COLUMN VECTOR FORM OF A SOLUTION:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{r}
3 \\
-5
\end{array}\right], \quad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
3-6 s-2 t \\
s \\
t
\end{array}\right]=\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{r}
-6 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{r}
-2 \\
0 \\
1
\end{array}\right]
$$

- GAUSS-JORDAN ELIMINATION $(3 \times 2$ PROTOTYPE POSSIBILITIES):

$$
\begin{aligned}
& \text { * indicates possibly non-zero entries Pivots are boxed: } \\
& {[A \mid \mathbf{b}]=\left[\begin{array}{ll|l}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right] \xrightarrow{\text { Gauss-Jordan }}\left[\begin{array}{cc|c}
\boxed{1} & 0 & * \\
0 & \boxed{1} & * \\
0 & 0 & 0
\end{array}\right]=[\operatorname{RREF}(A) \mid \widetilde{\mathbf{b}}]} \\
& {[A \mid \mathbf{b}]=\left[\begin{array}{cc|c}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right] \xrightarrow{\text { Gauss-Jordan }}\left[\begin{array}{cc|c}
\hline 1 & 0 & 0 \\
0 & \boxed{1} & 0 \\
0 & 0 & 1
\end{array}\right]=[\operatorname{RREF}(A) \mid \widetilde{\mathbf{b}}]} \\
& {[A \mid \mathbf{b}]=\left[\begin{array}{cc|c}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right] \xrightarrow{\text { Gauss-Jordan }}\left[\begin{array}{cc|c}
\hline 1 & * & * \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=[\operatorname{RREF}(A) \mid \widetilde{\mathbf{b}}]} \\
& {[A \mid \mathbf{b}]=\left[\begin{array}{cc|c}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right] \xrightarrow{\text { Gauss-Jordan }}\left[\begin{array}{cc|c}
\hline 1 & * & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]=[\operatorname{RREF}(A) \mid \widetilde{\mathbf{b}}]}
\end{aligned}
$$

- [PROTIP] DELAY THE ONSLAUGHT OF FRACTIONS (PART 1):

Sometimes an augmented matrix may have fractions in some entries:

$$
\left[\begin{array}{cc|c}
3 & \mathbf{1} / \mathbf{2} & \mathbf{1} / 5 \\
\mathbf{1} / \mathbf{3} & 2 & 4
\end{array}\right] \xrightarrow{\left(\frac{1}{3}\right) R_{1} \rightarrow R_{1}}\left[\begin{array}{cc|c}
\begin{array}{|c|c|}
1 & 1 / 6
\end{array} & \mathbf{1} / \mathbf{1} 5 \\
\mathbf{1} / 3 & 2 & 4
\end{array}\right]
$$

This will cause Gauss-Jordan to involve tedious fraction arithmetic!
To avoid dealing with fractions (at least for a few steps), SCALE each row with fractions by its common denominator:

$$
\left[\begin{array}{cc|c}
3 & 1 / 2 & 1 / 5 \\
1 / 3 & 2 & 4
\end{array}\right] \xrightarrow[3 R_{2} \rightarrow R_{2}]{10 R_{1} \rightarrow R_{1}}\left[\begin{array}{cc|c}
30 & 5 & 2 \\
1 & 6 & 12
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{cc|c}
1 & 6 & 12 \\
30 & 5 & 2
\end{array}\right]
$$

- [PROTIP] DELAY THE ONSLAUGHT OF FRACTIONS (PART 2):

Sometimes a SCALE to create a pivot may cause fractions in other entries:

$$
\left[\begin{array}{ll|l}
3 & 4 & 8 \\
2 & 3 & 0 \\
5 & 6 & 3
\end{array}\right] \xrightarrow{\left(\frac{1}{3}\right) R_{1} \rightarrow R_{1}}\left[\begin{array}{cc|c}
\hline 1 & 4 / 3 & 8 / 3 \\
2 & 3 & 0 \\
5 & 6 & 3
\end{array}\right]
$$

This will cause later Gauss-Jordan steps to involve tedious fraction arithmetic!

To avoid dealing with fractions (at least for a few steps), zero-out each entry below a would-be pivot by SCALE-ing each pair of rows such that the two entries are identical:

$$
\begin{aligned}
& {\left[\begin{array}{ll|l}
3 & 4 & 8 \\
2 & 3 & 0 \\
5 & 6 & 3
\end{array}\right] \xrightarrow[3 R_{2} \rightarrow R_{2}]{2 R_{1} \rightarrow R_{1}}\left[\begin{array}{cc|c}
\mathbf{6} & 8 & 16 \\
\mathbf{6} & 9 & 0 \\
5 & 6 & 3
\end{array}\right] \xrightarrow{(-1) R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{cc|c}
6 & 8 & 16 \\
0 & 1 & -16 \\
5 & 6 & 3
\end{array}\right] \xrightarrow{\left(\frac{1}{2}\right) R_{1} \rightarrow R_{1}}} \\
& {\left[\begin{array}{cc|c}
\mathbf{3} & 4 & 8 \\
0 & 1 & -16 \\
\mathbf{5} & 6 & 3
\end{array}\right] \xrightarrow{\substack{ \\
3 R_{3} \rightarrow R_{3}}}\left[\begin{array}{cc|c}
\mathbf{1 5} & 20 & 40 \\
0 & 1 & -16 \\
\mathbf{1 5} & 18 & 9
\end{array}\right] \xrightarrow{(-1) R_{1}+R_{3} \rightarrow R_{3}}\left[\begin{array}{cc|c}
15 & 20 & 40 \\
0 & 1 & -16 \\
0 & -2 & -31
\end{array}\right]} \\
& \xrightarrow{\left(\frac{1}{15}\right) R_{1} \rightarrow R_{1}}\left[\begin{array}{cc|c}
\hline 1 & 4 / 3 & 8 / 3 \\
0 & 1 & -16 \\
0 & -2 & -31
\end{array}\right]\left(\begin{array}{c}
\text { Again, fractions may be inevitable, } \\
\text { but at least they can be delayed. } \\
\text { NOTE: entries may become quite large! }
\end{array}\right)
\end{aligned}
$$

EX 1.2.2: Using Gauss-Jordan elimination, solve the linear system: $\left\{\begin{aligned} x & +y+2 z & +2 w & =3 \\ x & +2 y & + & +2 w\end{aligned}\right)=10$

EX 1.2.3: Using Gauss-Jordan elimination, solve the linear system: $\left\{\begin{aligned} 4 x+4 y & =4 \\ 3 x+y & =1 \\ 2 x+y & =1 \\ 4 x+3 y & =3\end{aligned}\right.$

EX 1.2.4: Using Gauss-Jordan elimination, solve the linear system: $\left\{\begin{aligned}-x_{1}+3 x_{2} & =-1 \\ 3 x_{1}-4 x_{2} & =-1 \\ -3 x_{1}+2 x_{2} & =4 \\ -9 x_{1}+6 x_{2} & =-3\end{aligned}\right.$

EX 1.2.6: Using Gauss-Jordan elimination, solve the linear system: $\left\{\begin{array}{rlrl}-3 x_{4} & =1 & 2 \\ -2 x_{1} & -4 x_{3} & +\quad 4 x_{4} & =1 \\ 2 x_{1}-x_{2} & +4 x_{3}-2 & 3 x_{4} & =\end{array}\right.$

