CONSTRUCTING Ax = b: CURVE INTERPOLATION [LARSON 1.3]

• CURVE INTERPOLATION (DEFINITION):

Let function f(x) be **continuous**. Then:

The curve y = f(x) interpolates a set of n points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ if:

$$f(x_1) = y_1, \quad f(x_2) = y_2, \quad \cdots, \quad f(x_n) = y_n$$

i.e. A curve **interpolates** a set of points if the curve **contains** all the points.

• POLYNOMIAL INTERPOLATION:

Given n points $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ s.t. all x-coordinates are **distinct**.

Then, there exists a **unique** (n-1)-degree interpolating polynomial

$$p(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots + c_{n-1} x^{n-1}$$

where scalars $c_0, c_1, c_2, \ldots, c_{n-1} \in \mathbb{R}$ are to be determined such that

$$p(x_1) = y_1, p(x_2) = y_2, \dots, p(x_n) = y_n$$

For instance, there's a unique quadratic $p(x) = c_0 + c_1 x + c_2 x^2$ that contains the **three** points (-1, 4), (0, -2), (3, 5).

There's a unique cubic $p(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3$ that contains **four** points, etc...

• POLYNOMIAL INTERPOLATION (PROCEDURE):

<u>GIVEN:</u> Points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ s.t. all x-coordinates are **distinct**.

TASK: Find unique interpolating polynomial $p(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots + c_{n-1} x^{n-1}$

(1) Setup linear system $A\mathbf{x} = \mathbf{b}$ using $p(x_1) = y_1, p(x_2) = y_2, \dots, p(x_n) = y_n$:

This is a $n \times n$ square linear system with unknowns $c_0, c_1, c_2, \ldots, c_{n-1}$.

(2) Solve linear system using Gauss-Jordan Elimination as usual.

• DIFFERENTIAL CURVE INTERPOLATION (DEFINITION):

Let function $f \in C^{n-1}$. Then the curve y = f(x) interpolates a point (x_0, y_0) in the differential sense if:

$$f(x_0) = y_0, \quad f'(x_0) = \alpha_1, \quad f''(x_0) = \alpha_2, \quad f'''(x_0) = \alpha_3, \quad f^{(4)}(x_0) = \alpha_4, \quad \cdots, \quad f^{(n-1)}(x_0) = \alpha_{n-1}$$

where scalars $\alpha_1, \alpha_2, \ldots, \alpha_{n-1} \in \mathbb{R}$.

i.e. The curve contains a single point but also must satisfy prescribed derivative values at that point.

• DIFFERENTIAL CURVE INTERPOLATION (PROCEDURE):

GIVEN: Point (x_0, y_0) & function $f \in C^{n-1}$ s.t. $f(x) = c_1 f_1(x) + \cdots + c_n f_n(x)$

<u>TASK:</u> Find coefficients c_1, \ldots, c_n s.t. f satisfies the following conditions:

$$f(x_0) = y_0, \quad f'(x_0) = \alpha_1, \quad f''(x_0) = \alpha_2, \quad f'''(x_0) = \alpha_3, \quad f^{(4)}(x_0) = \alpha_4, \quad \cdots, \quad f^{(n-1)}(x_0) = \alpha_{n-1}$$

- (1) Setup $n \times n$ linear system where each equation satisfies a condition.
- (2) Solve linear system using Gauss-Jordan Elimination as usual.
- (*) For simplicity, functions $f_1(x), f_2(x), \ldots, f_n(x)$ can only be:
 - Polynomials: $1, x, x^2, x^3, \dots$
 - Exponentials: $e^x, e^{-x}, e^{2x}, e^{-2x}, \dots$
 - Sines/Cosines: $\sin x$, $\cos x$, $\sin 2x$, $\cos 2x$, ...
 - Products of these: xe^x , $x \sin 2x$, $x^3 \cos x$, $e^{2x} \sin 3x$,...

NOTATION: $f \in \mathbb{C}^n$ means function f is n-times continuously differentiable.

This is Curve Interpolation since curve y=f(x) contains points $(x_1,y_1),\ldots,(x_5,y_5)$

i.e.
$$f(x_1) = y_1$$
, $f(x_2) = y_2$, $f(x_3) = y_3$, $f(x_4) = y_4$, $f(x_5) = y_5$

This is **NOT** Curve Interpolation since curve y=f(x) does **not** contain points $(x_1,y_1),(x_3,y_3),(x_5,y_5)$ i.e. $f(x_1)\neq y_1,\ f(x_3)\neq y_3,\ f(x_5)\neq y_5$

EX 1.3.1: Find a quadratic polynomial $p(x) = c_0 + c_1 x + c_2 x^2$ such that it contains the points (-1, 4), (0, -2), (3, 5). In other words, p must satisfy: p(-1) = 4, p(0) = -2, p(3) = 5.

EX 1.3.2: Find a function $f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3$ such that: f(2) = 3, f'(2) = -1, f''(2) = 1, f'''(2) = 0.

EX 1.3.3: Find a function $g(x) = c_0 + c_1 \sin(2x) + c_2 \cos(2x)$ such that: $g(\pi/4) = 4$, $g'(\pi/4) = 0$, $g''(\pi/4) = -2$.