MATRIX ALGEBRA: PROPERTIES, ZERO/IDENTITY/DIAGONAL MATRICES [LARSON 2.2]

• **<u>ZERO MATRIX</u>**: The $m \times n$ matrix O is called the $m \times n$ zero matrix if $O = [0]_{m \times n}$

$$O_{2\times 2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, O_{3\times 2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, O_{2\times 3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, O_{3\times 3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \cdots$$

• **<u>PROPERTIES OF MATRIX ADDITION & SCALAR MULTIPLICATION:</u>**

Let A, B, C be $m \times n$ matrices, O be the $m \times n$ zero matrix, and α, β be scalars. Then:

- (A1) A + B = B + A (A2) A + (B + C) = (A + B) + C
 - $(A3) \quad A + O = A$
- $(A4) \quad A + (-A) = O$
- (A5) $(\alpha\beta)A = \alpha(\beta A)$ (A6) (1)A = A(A7) $\alpha(A+B) = \alpha A + \alpha B$ (A8) $(\alpha+\beta)A = \alpha A + \beta A$
- <u>KRONECKER DELTA:</u> $\delta_{ij} := \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$, where i, j are postive integers
- **<u>IDENTITY MATRIX</u>**: The $n \times n$ square matrix I is called the $n \times n$ identity matrix if

$$I = [\delta_{ij}]_{n \times n} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}, I_{2 \times 2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, I_{3 \times 3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, I_{4 \times 4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \cdots$$

• PROPERTIES OF MATRIX MULTIPLICATION:

Let A, B, C be matrices s.t. the given matrix products are well-defined. Let α be a scalar. Then:

(M1)
$$A(BC) = (AB)C$$

(M2) $\alpha(AB) = (\alpha A)B = A(\alpha B)$
(M3) $A(B+C) = AB + AC$
(M4) $(B+C)A = BA + CA$

<u>NOTE:</u> Since $AB \neq BA$ in general, $A(B+C) \neq (B+C)A$ in general.

• **PROPERTIES OF TRANSPOSES:**

Let A, B be matrices s.t. the given matrix sums/products are well-defined.

Moreover, let α be a scalar. Then:

(T1)
$$(A^T)^T = A$$

(T2) $(A + B)^T = A^T + B^T$
(T3) $(\alpha A)^T = \alpha (A^T)$
(T4) $(AB)^T = B^T A^T$

• POWERS OF A SQUARE MATRIX:

Let A be a $n \times n$ square matrix and I be the $n \times n$ identity matrix. Moreover, let k be a positive integer. Then:

$$A^0 := I, \quad A^1 := A, \quad A^2 := AA, \quad A^3 := AAA, \quad A^k := \underbrace{AA \cdots A}_{k \text{ factors}}$$

• PROPERTIES OF POWERS OF SQUARE MATRICES:

Let A be a $n \times n$ square matrix and j, k be nonnegative integers. Then:

(P1)
$$A^{j}A^{k} = A^{j+k}$$
 (P2) $(A^{j})^{k} = A^{jk}$

• DIAGONAL MATRIX AND ITS POWERS: D is a $n \times n$ diagonal matrix and k is a nonnegative integer.

$D = [d_{ij}\delta_{ij}]_{n \times n} =$	$\int d_{11}$	0	•••	0]	d_{11}^{k}	0		0]
	0	d_{22}	•••	0	, $D^k = [d^k_{ij}\delta_{ij}]_{n \times n} =$	0	d_{22}^{k}		0
		÷	·	÷		÷	÷	۰.	:
	0	0		d_{nn}		0	0		d_{nn}^k

©2015 Josh Engwer – Revised August 26, 2015

 $\underline{\mathbf{EX 2.2.1:}} \quad \text{Suppose } A\mathbf{v} = \begin{bmatrix} 1\\ 2\\ 0 \end{bmatrix}.$

- (a) If **v** is a 5×1 column vector, what shape must matrix A be?
- (b) If A is a 3×4 matrix, what shape must column vector **v** be?
- (c) Compute $A(-8\mathbf{v})$
- (d) Compute $A\left(\frac{1}{4}\mathbf{v}\right)$

<u>EX 2.2.2</u>: Let X be a 2×2 matrix and O be the 2×2 zero matrix.

Solve the following matrix equation for X:
$$2X + \begin{bmatrix} 2 & -2 \\ 4 & 8 \end{bmatrix} + 8 \begin{bmatrix} 1 & 0 \\ -1/2 & 0 \end{bmatrix} = O$$

$$\boxed{\textbf{EX 2.2.3:}} \text{ Let } A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \\ 6 & 7 & 8 \end{bmatrix}, C = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}.$$

Of the possible matrix products ABC, ACB, BAC, BCA, CAB, CBA, which are well-defined and what are their shapes?

EX 2.2.4: Let
$$A = \begin{bmatrix} 1 & 1 \\ 2 & -3 \end{bmatrix}$$
 and $D = \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix}$.

(a) Compute A^3

(b) Compute D^3

 $[\]textcircled{C}2015$ Josh Engwer – Revised August 26, 2015