EX 2.3.1: Let $A=\left[\begin{array}{rr}1 & -1 \\ 2 & 4\end{array}\right]$.
(a) Find A^{-1}.

Since A is 2×2, don't bother with Gauss-Jordan Elimination. Instead use the easier formula:

$$
A^{-1}=\frac{1}{(1)(4)-(-1)(2)}\left[\begin{array}{cc}
4 & 1 \\
-2 & 1
\end{array}\right]=\frac{1}{6}\left[\begin{array}{cc}
4 & 1 \\
-2 & 1
\end{array}\right]=\left[\begin{array}{cc}
2 / 3 & 1 / 6 \\
-1 / 3 & 1 / 6
\end{array}\right]
$$

(b) Use A^{-1} to solve $A \mathbf{x}=\mathbf{b}$, where $\mathbf{b}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$.

$$
A \mathbf{x}=\mathbf{b} \Longrightarrow \mathbf{x}=A^{-1} \mathbf{b}=\frac{1}{6}\left[\begin{array}{cc}
4 & 1 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\frac{1}{6}\left[\begin{array}{c}
(4)(1)+(1)(3) \\
(-2)(1)+(1)(3)
\end{array}\right]=\frac{1}{6}\left[\begin{array}{l}
7 \\
1
\end{array}\right]=\left[\begin{array}{l}
7 / 6 \\
1 / 6
\end{array}\right]
$$

REMARK: Notice that $\frac{1}{6}$ was factored from A^{-1} to avoid messy fraction arithmetic when multiplying.
(c) Use A^{-1} to solve $A \mathbf{x}=\mathbf{b}$, where $\mathbf{b}=\left[\begin{array}{l}-2 \\ -1\end{array}\right]$.

$$
A \mathbf{x}=\mathbf{b} \Longrightarrow \mathbf{x}=A^{-1} \mathbf{b}=\frac{1}{6}\left[\begin{array}{cc}
4 & 1 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
-2 \\
-1
\end{array}\right]=\frac{1}{6}\left[\begin{array}{c}
(4)(-2)+(1)(-1) \\
(-2)(-2)+(1)(-1)
\end{array}\right]=\frac{1}{6}\left[\begin{array}{c}
-9 \\
3
\end{array}\right]=\left[\begin{array}{c}
-3 / 2 \\
1 / 2
\end{array}\right]
$$

REMARK: Notice that $\frac{1}{6}$ was factored from A^{-1} to avoid messy fraction arithmetic when multiplying.
(d) Use A^{-1} to solve $A X=B$, where $B=\left[\begin{array}{ll}1 & 5 \\ 0 & 2\end{array}\right]$.

$$
A X=B \Longrightarrow X=A^{-1} B=\frac{1}{6}\left[\begin{array}{cc}
4 & 1 \\
-2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 5 \\
0 & 2
\end{array}\right]=\frac{1}{6}\left[\begin{array}{cc}
4 & 22 \\
-2 & -8
\end{array}\right]=\left[\begin{array}{cc}
2 / 3 & 11 / 3 \\
-1 / 3 & -4 / 3
\end{array}\right]
$$

EX 2.3.2: Let $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 3 & 5 & 4 \\ 3 & 6 & 5\end{array}\right] . \quad$ Find A^{-1} if it exists.

$$
\therefore \quad A^{-1}=\left[\begin{array}{rrr}
1 & 1 & -1 \\
-3 & 2 & -1 \\
3 & -3 & 2
\end{array}\right]
$$

EX 2.3.3: Let $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 3 & 3 & 6 \\ 2 & 4 & 6\end{array}\right] . \quad$ Find A^{-1} if it exists.
$[A \mid I]=\left[\begin{array}{ccc|ccc}\left.\left.\begin{array}{|c|cc|c|ccc}1 & 1 & 2 & 1 & 0 & 0 \\ 3 & 3 & 6 & 0 & 1 & 0 \\ 2 & 4 & 6 & 0 & 0 & 1\end{array}\right] \xrightarrow[(-2) R_{1}+R_{3} \rightarrow R_{3}]{(-3) R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{ccc|ccc}1 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & -3 & 1 & 0 \\ 0 & 2 & 2 & -2 & 0 & 1\end{array}\right], ~\right] ~\end{array}\right.$
Translating $2^{\text {nd }}$ row so far yields: $\quad 0=1 \quad \leftarrow \begin{array}{cc} & \leftarrow \text { CONTRADICTION! }\end{array}$

$$
0=0 \leftarrow \text { TAUTOLOGY }
$$

Therefore, since there's at least one CONTRADICTION, $\operatorname{RREF}(A) \neq I \Longrightarrow A$ has no inverse $\Longrightarrow A$ is singular
The point is when performing Gauss-Jordan Elimination on augmented matrix $[A \mid I]$, if at any point of the procedure you have a row with all zeroes left of the vertical bar and at least one non-zero right of the vertical bar, you can stop and conclude there's at least one CONTRADICTION, hence $\operatorname{RREF}(A) \neq I$ which implies the matrix has no inverse.

EX 2.3.4: Let $A^{-1}=\left[\begin{array}{rrr}1 & 0 & 3 \\ -1 & 2 & 2 \\ 1 & 0 & 0\end{array}\right]$ and $B^{-1}=\left[\begin{array}{rrr}-1 & 4 & 4 \\ 0 & -1 & -2 \\ 3 & -2 & 4\end{array}\right]$.
(a) Compute $\left(-\frac{1}{3} A\right)^{-1}$.

$$
\left(-\frac{1}{3} A\right)^{-1} \stackrel{I 3}{=}(-3) A^{-1}=(-3)\left[\begin{array}{rrr}
1 & 0 & 3 \\
-1 & 2 & 2 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{rrr}
-3 & 0 & -9 \\
3 & -6 & -6 \\
-3 & 0 & 0
\end{array}\right]
$$

(b) Compute $\left(B^{2}\right)^{-1}$.

$$
\left(B^{2}\right)^{-1} \stackrel{I 2}{=}\left(B^{-1}\right)^{2}=B^{-1} B^{-1}=\left[\begin{array}{rrr}
-1 & 4 & 4 \\
0 & -1 & -2 \\
3 & -2 & 4
\end{array}\right]\left[\begin{array}{rrr}
-1 & 4 & 4 \\
0 & -1 & -2 \\
3 & -2 & 4
\end{array}\right]=\left[\begin{array}{rrr}
13 & -16 & 4 \\
-6 & 5 & -6 \\
9 & 6 & 32
\end{array}\right]
$$

(c) Compute $(A B)^{-1}$.

$$
(A B)^{-1} \stackrel{I 5}{=} B^{-1} A^{-1}=\left[\begin{array}{rrr}
-1 & 4 & 4 \\
0 & -1 & -2 \\
3 & -2 & 4
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 3 \\
-1 & 2 & 2 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{rrr}
-1 & 8 & 5 \\
-1 & -2 & -2 \\
9 & -4 & 5
\end{array}\right]
$$

$$
\begin{aligned}
& {[A \mid I]=\left[\begin{array}{|ccc|ccc}
\boxed{1} & 1 & 1 & 1 & 0 & 0 \\
3 & 5 & 4 & 0 & 1 & 0 \\
3 & 6 & 5 & 0 & 0 & 1
\end{array}\right]=\xrightarrow[(-3) R_{1}+R_{3} \rightarrow R_{3}]{(-3) R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{|ccc|rrr}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 2 & 1 & -3 & 1 & 0 \\
0 & 3 & 2 & -3 & 0 & 1
\end{array}\right] \xrightarrow[2 R_{3} \rightarrow R_{3}]{3 R_{2} \rightarrow R_{2}}\left[\begin{array}{rrr|rrl}
\hline 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 6 & 3 & -9 & 3 & 0 \\
0 & 6 & 4 & -6 & 0 & 2
\end{array}\right]} \\
& \xrightarrow{(-1) R_{2}+R_{3} \rightarrow R_{3}}\left[\begin{array}{ccc|rrr}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 6 & 3 & -9 & 3 & 0 \\
0 & 0 & 1 & 3 & -3 & 2
\end{array}\right] \xrightarrow[(-1) R_{3}+R_{1} \rightarrow R_{1}]{\frac{(-3) R_{3}+R_{2} \rightarrow R_{2}}{(-2}}\left[\begin{array}{rrr|rrr}
1 & 1 & 0 & -2 & 3 & -2 \\
0 & 6 & 0 & -18 & 12 & -6 \\
0 & 0 & 1 & 3 & -3 & 2
\end{array}\right] \\
& \xrightarrow{\left(\frac{1}{6}\right) R_{2} \rightarrow R_{2}}\left[\begin{array}{ccc|rrr}
\hline 1 & 1 & 0 & -2 & 3 & -2 \\
0 & 1 & 0 & -3 & 2 & -1 \\
0 & 0 & 1 & 3 & -3 & 2
\end{array}\right] \xrightarrow{(-1) R_{2}+R_{1} \rightarrow R_{1}}\left[\begin{array}{ccc|rrr}
\boxed{1} & 0 & 0 & 1 & 1 & -1 \\
0 & \boxed{1} & 0 & -3 & 2 & -1 \\
0 & 0 & \boxed{1} & 3 & -3 & 2
\end{array}\right]=\left[I \mid A^{-1}\right]
\end{aligned}
$$

