SOLVING SQUARE Ax = b: INVERSE OF A SQUARE MATRIX [LARSON 2.3]

• INVERSE OF A SQUARE MATRIX: Let A be a $n \times n$ square matrix and I be the $n \times n$ identity matrix.

Then A is **invertible** if there exists a $n \times n$ matrix A^{-1} such that $A^{-1}A = AA^{-1} = I$

If A does <u>not</u> have an inverse, A is called **singular** (AKA **noninvertible**).

Non-square matrices do <u>not</u> have inverses (since $AB \neq BA$ if $m \neq n$.)

• UNIQUENESS OF AN INVERSE: If $n \times n$ square matrix A is invertible, then its inverse A^{-1} is unique.

• FINDING AN INVERSE MATRIX VIA GAUSS-JORDAN ELIMINATION:

<u>GIVEN:</u> Square $n \times n$ matrix A.

<u>TASK:</u> Find A^{-1} if it exists, otherwise conclude A is singular.

- (1) Form **augmented** matrix [A|I], where I is $n \times n$ identity matrix.
- (2) Apply Gauss-Jordan Elimination to [A|I]:

If $\operatorname{RREF}(A) \neq I$, then A is singular.

If RREF(A) = I, then $[A|I] \xrightarrow{Gauss-Jordan} [I|A^{-1}]$

<u>WARNING:</u> There will **never** be a **pivot** to the **right of vertical divider**.

SANITY CHECK: Check that $A^{-1}A = I$ and $AA^{-1} = I$.

• INVERSE OF A 2×2 MATRIX:

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 be a 2 × 2 matrix s.t. $a, b, c, d \in \mathbb{R}$. Then:

If
$$ad - bc \neq 0$$
, then $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

If ad - bc = 0, then A is singular.

• **PROPERTIES OF INVERSES:**

Let A, B be $n \times n$ invertible matrices, k be positive integer, and $\alpha \neq 0$. Then $A^{-1}, A^k, \alpha A, A^T, AB$ are all invertible and the following are true:

(I1)	$(A^{-1})^{-1} = A$	Inverse of an Inverse
(I2)	$(A^k)^{-1} = (A^{-1})^k$	Inverse of a Power
(I3)	$(\alpha A)^{-1} = \frac{1}{\alpha} A^{-1}$	Inverse of a Scalar Mult.
(I4)	$(A^T)^{-1} = (A^{-1})^T$	Inverse of a Transpose
(I5)	$(AB)^{-1} = B^{-1}A^{-1}$	Inverse of a Product

• INVERSE OF AN EXTENDED PRODUCT:

Let A, B, C be $n \times n$ invertible matrices. Then: $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$

Let $A_1, A_2, \ldots, A_{k-1}, A_k$ be $n \times n$ invertible matrices. Then: $(A_1A_2 \cdots A_{k-1}A_k)^{-1} = A_k^{-1}A_{k-1}^{-1} \cdots A_2^{-1}A_1^{-1}$

• CANCELLATION PROPERTIES OF MATRIX PRODUCTS:

Let C be an **invertible** matrix and A, B have compatible shapes. Then:

(C1)	If $AC = BC$, then $A = B$	Right-cancellation
(C2)	If $CA = CB$, then $A = B$	Left-cancellation

- SOLVING SQUARE LINEAR SYSTEM $A\mathbf{x} = \mathbf{b}$ VIA A^{-1} : $\mathbf{x} = A^{-1}\mathbf{b}$
- SOLVING SQUARE LINEAR SYSTEM AX = B VIA A^{-1} : $X = A^{-1}B$
- SOLVING SQUARE LINEAR SYSTEM XA = B VIA A^{-1} : $X = BA^{-1}$

EX 2.3.1: Let
$$A = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}$$
.

(a) Find A^{-1} .

(b) Use A^{-1} to solve $A\mathbf{x} = \mathbf{b}$, where $\mathbf{b} = \begin{bmatrix} 1\\ 3 \end{bmatrix}$.

(c) Use
$$A^{-1}$$
 to solve $A\mathbf{x} = \mathbf{b}$, where $\mathbf{b} = \begin{bmatrix} -2 \\ -1 \end{bmatrix}$.

(d) Use
$$A^{-1}$$
 to solve $AX = B$, where $B = \begin{bmatrix} 1 & 5 \\ 0 & 2 \end{bmatrix}$.

C2015 Josh Engwer – Revised August 26, 2015

EX 2.3.2: Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 4 \\ 3 & 6 & 5 \end{bmatrix}$$
. Find A^{-1} if it exists.

©2015 Josh Engwer – Revised August 26, 2015

EX 2.3.3: Let
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 3 & 6 \\ 2 & 4 & 6 \end{bmatrix}$$
. Find A^{-1} if it exists.

EX 2.3.4: Let
$$A^{-1} = \begin{bmatrix} 1 & 0 & 3 \\ -1 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix}$$
 and $B^{-1} = \begin{bmatrix} -1 & 4 & 4 \\ 0 & -1 & -2 \\ 3 & -2 & 4 \end{bmatrix}$.
(a) Compute $\left(-\frac{1}{3}A\right)^{-1}$.

(b) Compute $(B^2)^{-1}$.

(c) Compute $(AB)^{-1}$.