SOLVING SQUARE $A \mathrm{x}=\mathrm{b}$: INVERSE OF A SQUARE MATRIX [LARSON 2.3]

- INVERSE OF A SQUARE MATRIX: Let A be a $n \times n$ square matrix and I be the $n \times n$ identity matrix.

Then A is invertible if there exists a $n \times n$ matrix A^{-1} such that $A^{-1} A=A A^{-1}=I$
If A does not have an inverse, A is called singular (AKA noninvertible).
Non-square matrices do not have inverses (since $A B \neq B A$ if $m \neq n$.)

- UNIQUENESS OF AN INVERSE: If $n \times n$ square matrix A is invertible, then its inverse A^{-1} is unique.
- FINDING AN INVERSE MATRIX VIA GAUSS-JORDAN ELIMINATION:

GIVEN: Square $n \times n$ matrix A.
TASK: Find A^{-1} if it exists, otherwise conclude A is singular.
(1) Form augmented matrix $[A \mid I]$, where I is $n \times n$ identity matrix.
(2) Apply Gauss-Jordan Elimination to $[A \mid I]$:

If $\operatorname{RREF}(A) \neq I$, then A is singular.

$$
\text { If } \operatorname{RREF}(A)=I \text {, then }[A \mid I] \xrightarrow{\text { Gauss-Jordan }}\left[I \mid A^{-1}\right]
$$

WARNING: There will never be a pivot to the right of vertical divider.
SANITY CHECK: Check that $A^{-1} A=I$ and $A A^{-1}=I$.

- INVERSE OF A 2×2 MATRIX:

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a 2×2 matrix s.t. $a, b, c, d \in \mathbb{R}$. Then: If $a d-b c \neq 0$, then $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$ If $a d-b c=0$, then A is singular.

- PROPERTIES OF INVERSES:

Let A, B be $n \times n$ invertible matrices, k be positive integer, and $\alpha \neq 0$.
Then $A^{-1}, A^{k}, \alpha A, A^{T}, A B$ are all invertible and the following are true:

(I1)	$\left(A^{-1}\right)^{-1}=A$	Inverse of an Inverse
(I2)	$\left(A^{k}\right)^{-1}=\left(A^{-1}\right)^{k}$	Inverse of a Power
(I3)	$(\alpha A)^{-1}=\frac{1}{\alpha} A^{-1}$	Inverse of a Scalar Mult.
(I4)	$\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$	Inverse of a Transpose
(I5)	$(A B)^{-1}=B^{-1} A^{-1}$	Inverse of a Product

- INVERSE OF AN EXTENDED PRODUCT:

Let A, B, C be $n \times n$ invertible matrices. Then: $\quad(A B C)^{-1}=C^{-1} B^{-1} A^{-1}$
Let $A_{1}, A_{2}, \ldots, A_{k-1}, A_{k}$ be $n \times n$ invertible matrices. Then: $\quad\left(A_{1} A_{2} \cdots A_{k-1} A_{k}\right)^{-1}=A_{k}^{-1} A_{k-1}^{-1} \cdots A_{2}^{-1} A_{1}^{-1}$

- CANCELLATION PROPERTIES OF MATRIX PRODUCTS:

Let C be an invertible matrix and A, B have compatible shapes. Then:

$$
\begin{array}{ll}
(\mathrm{C} 1) \text { If } A C=B C \text {, then } A=B & \text { Right-cancellation } \\
(\mathrm{C} 2) & \text { If } C A=C B \text {, then } A=B
\end{array}
$$

- SOLVING SQUARE LINEAR SYSTEM $A \mathbf{x}=\mathbf{b}$ VIA $A^{-1}: \quad \mathbf{x}=A^{-1} \mathbf{b}$
- SOLVING SQUARE LINEAR SYSTEM $A X=B$ VIA $A^{-1}: \quad X=A^{-1} B$
- SOLVING SQUARE LINEAR SYSTEM $X A=B$ VIA $A^{-1}: \quad X=B A^{-1}$

EX 2.3.1: Let $A=\left[\begin{array}{rr}1 & -1 \\ 2 & 4\end{array}\right]$.
(a) Find A^{-1}.
(b) Use A^{-1} to solve $A \mathbf{x}=\mathbf{b}$, where $\mathbf{b}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$.
(c) Use A^{-1} to solve $A \mathbf{x}=\mathbf{b}$, where $\mathbf{b}=\left[\begin{array}{l}-2 \\ -1\end{array}\right]$.
(d) Use A^{-1} to solve $A X=B$, where $B=\left[\begin{array}{ll}1 & 5 \\ 0 & 2\end{array}\right]$.

EX 2.3.2: Let $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 3 & 5 & 4 \\ 3 & 6 & 5\end{array}\right] . \quad$ Find A^{-1} if it exists.

EX 2.3.3: Let $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 3 & 3 & 6 \\ 2 & 4 & 6\end{array}\right] . \quad$ Find A^{-1} if it exists.

EX 2.3.4: Let $A^{-1}=\left[\begin{array}{rrr}1 & 0 & 3 \\ -1 & 2 & 2 \\ 1 & 0 & 0\end{array}\right]$ and $B^{-1}=\left[\begin{array}{rrr}-1 & 4 & 4 \\ 0 & -1 & -2 \\ 3 & -2 & 4\end{array}\right]$.
(a) Compute $\left(-\frac{1}{3} A\right)^{-1}$.
(b) Compute $\left(B^{2}\right)^{-1}$.
(c) Compute $(A B)^{-1}$.

