EX 2.4.1: Let $A=\left[\begin{array}{rrr}-2 & -1 & 0 \\ 8 & 9 & 1 \\ -6 & 7 & 8\end{array}\right]$.
(a) Find the $L U$-Factorization of A.

Apply COMBINE elem. row operations to zero out entries below the main diagonal, resulting in U :

$$
\begin{aligned}
& \xrightarrow{4 R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{rrr}
-2 & -1 & 0 \\
0 & 5 & 1 \\
-6 & 7 & 8
\end{array}\right]=E_{1} A \quad \Longrightarrow \quad E_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \Longrightarrow \quad E_{1}^{-1}=\left[\begin{array}{rrl}
1 & 0 & 0 \\
-4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \xrightarrow{(-3) R_{1}+R_{3} \rightarrow R_{3}}\left[\begin{array}{rrr}
-2 & -1 & 0 \\
0 & 5 & 1 \\
0 & 10 & 8
\end{array}\right]=E_{2} E_{1} A \quad \Longrightarrow \quad E_{2}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right] \quad \Longrightarrow \quad E_{2}^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right] \\
& \xrightarrow{(-2) R_{2}+R_{3} \rightarrow R_{3}}\left[\begin{array}{rrr}
-2 & -1 & 0 \\
0 & 5 & 1 \\
0 & 0 & 6
\end{array}\right]=E_{3} E_{2} E_{1} A \quad \Longrightarrow \quad E_{3}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right] \quad \Longrightarrow \quad E_{3}^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1
\end{array}\right] \\
& \therefore U=\left[\begin{array}{rrr}
-2 & -1 & 0 \\
0 & 5 & 1 \\
0 & 0 & 6
\end{array}\right] \text { and } E_{3} E_{2} E_{1} A=U \Longrightarrow A=\underbrace{E_{1}^{-1} E_{2}^{-1} E_{3}^{-1}}_{L} U \\
& \therefore L=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-4 & 1 & 0 \\
3 & 2 & 1
\end{array}\right] \\
& \therefore\left[\begin{array}{rrr}
-2 & -1 & 0 \\
8 & 9 & 1 \\
-6 & 7 & 8
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-4 & 1 & 0 \\
3 & 2 & 1
\end{array}\right]\left[\begin{array}{rrr}
-2 & -1 & 0 \\
0 & 5 & 1 \\
0 & 0 & 6
\end{array}\right]
\end{aligned}
$$

(b) Use $A=L U$ to solve linear system $A \mathbf{x}=\mathbf{b}$, where $\mathbf{b}=\left[\begin{array}{c}-8 \\ 23 \\ -36\end{array}\right]$.
$L \mathbf{y}=\mathbf{b} \Longrightarrow\left\{\begin{array}{rl}y_{1} & \\ & =-8 \\ -4 y_{1} & +y_{2} \\ 3 y_{1} & +2 y_{2}+y_{3} \\ = & -36\end{array} \xrightarrow{\text { Forward-Solve }} \mathbf{y}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]=\left[\begin{array}{r}-8 \\ -9 \\ 6\end{array}\right]\right.$
$U \mathbf{x}=\mathbf{y} \Longrightarrow\left\{\begin{array}{rlll}-2 x_{1} & - & x_{2} & \\ & 5 x_{2} & & -8 \\ & x_{3} & = & -9 \\ 6 x_{3} & = & 6\end{array} \xrightarrow{\text { Back-Solve }} \mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{r}5 \\ -2 \\ 1\end{array}\right]\right.$
(c) Use $A=L U$ to solve linear system $A \mathbf{x}=\mathbf{b}$, where $\mathbf{b}=\left[\begin{array}{c}6 \\ -25 \\ 10\end{array}\right]$.
$L \mathbf{y}=\mathbf{b} \Longrightarrow\left\{\begin{array}{rlr}y_{1} & & \\ & = & 6 \\ -4 y_{1} & +y_{2} & \\ 3 y_{1}+2 y_{2} & +y_{3} & = \\ \end{array} \xrightarrow{\text { Forward-Solve }} \mathbf{y}=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]=\left[\begin{array}{r}6 \\ -1 \\ -6\end{array}\right]\right.$
$U \mathbf{x}=\mathbf{y} \Longrightarrow\left\{\begin{array}{rlrl}-2 x_{1} & - & x_{2} & \\ & 5 x_{2} & + & 6 \\ & & x_{3} & -1 \\ 6 x_{3} & = & -6\end{array} \xrightarrow{\text { Back-Solve }} \mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{r}-3 \\ 0 \\ -1\end{array}\right]\right.$

Apply COMBINE elem. row operations to zero out entries below the main diagonal, resulting in U :

$$
\begin{aligned}
& \xrightarrow{4 R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{rrrrr}
3 & 1 & 0 & -1 & 1 \\
0 & 2 & 4 & 1 & 5 \\
9 & 9 & 9 & 0 & 24 \\
0 & -4 & -11 & 2 & -5
\end{array}\right] \quad \Longrightarrow \quad E_{1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
4 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \Longrightarrow \quad E_{1}^{-1}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-4 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \xrightarrow{(-3) R_{1}+R_{3} \rightarrow R_{3}}\left[\begin{array}{rrrrr}
3 & 1 & 0 & -1 & 1 \\
0 & 2 & 4 & 1 & 5 \\
0 & 6 & 9 & 3 & 21 \\
0 & -4 & -11 & 2 & -5
\end{array}\right] \quad \Longrightarrow \quad E_{2}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-3 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \Longrightarrow \quad E_{2}^{-1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
3 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \xrightarrow{(-3) R_{2}+R_{3} \rightarrow R_{3}}\left[\begin{array}{rrrrr}
3 & 1 & 0 & -1 & 1 \\
0 & 2 & 4 & 1 & 5 \\
0 & 0 & -3 & 0 & 6 \\
0 & -4 & -11 & 2 & -5
\end{array}\right] \quad \Longrightarrow \quad E_{3}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -3 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \Longrightarrow \quad E_{3}^{-1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 3 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \xrightarrow{2 R_{2}+R_{4} \rightarrow R_{4}}\left[\begin{array}{rrrrr}
3 & 1 & 0 & -1 & 1 \\
0 & 2 & 4 & 1 & 5 \\
0 & 0 & -3 & 0 & 6 \\
0 & 0 & -3 & 4 & 5
\end{array}\right] \quad \Longrightarrow \quad E_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 2 & 0 & 1
\end{array}\right] \quad \Longrightarrow \quad E_{4}^{-1}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -2 & 0 & 1
\end{array}\right] \\
& \xrightarrow{(-1) R_{3}+R_{4} \rightarrow R_{4}}\left[\begin{array}{rrrrr}
3 & 1 & 0 & -1 & 1 \\
0 & 2 & 4 & 1 & 5 \\
0 & 0 & -3 & 0 & 6 \\
0 & 0 & 0 & 4 & -1
\end{array}\right] \quad \Longrightarrow \quad E_{5}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right] \quad \Longrightarrow \quad E_{5}^{-1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \\
& \therefore U=\left[\begin{array}{rrrrr}
3 & 1 & 0 & -1 & 1 \\
0 & 2 & 4 & 1 & 5 \\
0 & 0 & -3 & 0 & 6 \\
0 & 0 & 0 & 4 & -1
\end{array}\right] \text { and } E_{5} E_{4} E_{3} E_{2} E_{1} A=U \Longrightarrow A=\underbrace{E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1} E_{5}^{-1}}_{L} U \\
& \therefore L=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-4 & 1 & 0 & 0 \\
3 & 3 & 1 & 0 \\
0 & -2 & 1 & 1
\end{array}\right] \\
& \therefore\left[\begin{array}{rrrrr}
3 & 1 & 0 & -1 & 1 \\
-12 & -2 & 4 & 5 & 1 \\
9 & 9 & 9 & 0 & 24 \\
0 & -4 & -11 & 2 & -5
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-4 & 1 & 0 & 0 \\
3 & 3 & 1 & 0 \\
0 & -2 & 1 & 1
\end{array}\right]\left[\begin{array}{rrrrr}
3 & 1 & 0 & -1 & 1 \\
0 & 2 & 4 & 1 & 5 \\
0 & 0 & -3 & 0 & 6 \\
0 & 0 & 0 & 4 & -1
\end{array}\right]
\end{aligned}
$$

EX 2.4.3: Let $A=\left[\begin{array}{rrr}6 & -2 & 1 \\ 30 & -6 & 8 \\ -12 & -12 & -15 \\ 18 & -2 & 6\end{array}\right]$. Find the $L U$-Factorization of A.
Apply COMBINE elem. row operations to zero out entries below the main diagonal, resulting in U :

$$
\begin{aligned}
& \xrightarrow{(-5) R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{rrr}
6 & -2 & 1 \\
0 & 4 & 3 \\
-12 & -12 & -15 \\
18 & -2 & 6
\end{array}\right] \Longrightarrow E_{1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-5 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \Longrightarrow \quad E_{1}^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
5 & 0 \\
5 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \xrightarrow{2 R_{1}+R_{3} \rightarrow R_{3}}\left[\begin{array}{rrr}
6 & -2 & 1 \\
0 & 4 & 3 \\
0 & -16 & -13 \\
18 & -2 & 6
\end{array}\right] \quad E_{2}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad E_{2}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 0
\end{array}\right] \\
& \xrightarrow{(-3) R_{1}+R_{4} \rightarrow R_{4}}\left[\begin{array}{rrr}
6 & -2 & 1 \\
0 & 4 & 3 \\
0 & -16 & -13 \\
0 & 4 & 3
\end{array}\right] \quad \Longrightarrow \quad E_{3}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-3 & 0 & 0 & 1
\end{array}\right] \quad E_{3}^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 0
\end{array}\right] \\
& \xrightarrow{4 R_{2}+R_{3} \rightarrow R_{3}}\left[\begin{array}{rrr}
6 & -2 & 1 \\
0 & 4 & 3 \\
0 & 0 & -1 \\
0 & 4 & 3
\end{array}\right] \quad E_{4}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 4 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad E_{4}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 \\
1 & 0 & 0 \\
0 & -4 & 1 \\
0 & 0 & 1
\end{array}\right] \\
& \xrightarrow{(-1) R_{2}+R_{4} \rightarrow R_{4}}\left[\begin{array}{rrr}
6 & -2 & 1 \\
0 & 4 & 3 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right] \quad E_{5}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right] \quad E_{5}^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right] \\
& \therefore U=\left[\begin{array}{rrr}
6 & -2 & 1 \\
0 & 4 & 3 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right] \text { and } E_{5} E_{4} E_{3} E_{2} E_{1} A=U \Longrightarrow A=\underbrace{E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1} E_{5}^{-1}}_{L} U \\
& \therefore L=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
5 & 1 & 0 & 0 \\
-2 & -4 & 1 & 0 \\
3 & 1 & 0 & 1
\end{array}\right] \\
& \therefore\left[\begin{array}{rrr}
6 & -2 & 1 \\
30 & -6 & 8 \\
-12 & -12 & -15 \\
18 & -2 & 6
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
5 & 1 & 0 & 0 \\
-2 & -4 & 1 & 0 \\
3 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
6 & -2 & 1 \\
0 & 4 & 3 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

