SOLVING Ax = b WITH DIFFERENT b's: LU-FACTORIZATION [LARSON 2.4]

• COMBINE ELEMENTARY ROW OPERATIONS:

(COMBINE) $[\alpha R_i + R_j \rightarrow R_j]$ Add scalar multiple α of row *i* to row *j*

• **ELEMENTARY MATRICES:**

A square matrix E is an **elementary matrix** if it can be obtained from identity matrix I by a single elem row op.

• ELEMENTARY MATRICES REPRESENTING COMBINE OPERATIONS:

	1	0	0	1		1	0	0	1
$[5R_1 + R_2 \to R_2]:$	5	1	0	,	$[(-5)R_2 + R_3 \to R_3]:$	0	1	0	
	0	0	1			0	-5	1 _	

• INVERSE OF AN ELEMENTARY MATRIX:

If E is an **elementary matrix**, then E^{-1} exists and is an elementary matrix.

The inverse "undoes" the elementary row operation.

	1	0	0			1	0	0	1
$[5R_1 + R_2 \to R_2]:$	5	1	0	has inverse	$[(-5)R_1 + R_2 \to R_2]:$	-5	1	0	
	0	0	1			0	0	1	

• TRIANGULAR MATRICES:

Lower Triangular:	$\left[\begin{array}{c}1\\3\end{array}\right]$	$\begin{bmatrix} 0 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \end{bmatrix}$	<mark>0</mark> 5	0 0],	1 3 5	$\begin{bmatrix} 0 \\ 4 \\ 0 \end{bmatrix}$,	$\begin{array}{c} 1\\ 4\\ 0\end{array}$	0 5 8	0 0 0	,
Upper Triangular:	1 0	$\begin{bmatrix} 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$0 \\ 5$	$\begin{bmatrix} 3\\ 6 \end{bmatrix}, \begin{bmatrix} \\ \end{bmatrix}$	1 0 0	$\begin{bmatrix} 2 \\ 4 \\ 0 \end{bmatrix}$,	[1 0 0	0 0 0	3 6 9	,
• UNIT TRIANGULA	R M	ATRICES:	<u>:</u>							

	г	-	г		-	1	0		1	0	0	
Unit Lower Triangular:	$\begin{bmatrix} 1\\ 3 \end{bmatrix}$	0 1],	$\begin{bmatrix} 1 \\ 4 \end{bmatrix}$	0 1	0 0],	3	1 0	,	1 0	1 8	0 1	,
	-	-	-		-	LΙ	0			8	Т.	

• LU-FACTORIZATION OF A MATRIX (PROCEDURE):

<u>GIVEN:</u> $m \times n$ matrix A where **no row swaps are necessary**.

<u>TASK:</u> Form A = LU, (L is square unit lower triangular & U is upper triangular)

- (1) COMBINE to zero-out an entry below main diagonal: $[\alpha R_i + R_j \rightarrow R_j]$
- (2) Form $m \times m$ elementary matrix corresponding to COMBINE operation: E
- (3) Find the inverse of the elementary matrix: E^{-1}
- (4) Repeat steps (1)-(3) for all such entries, top-to-bottom, left-to-right
- (5) Resulting matrix is upper triangular: $U = E_k E_{k-1} \cdots E_3 E_2 E_1 A$

(6) Determine L:
$$E_k E_{k-1} \cdots E_2 E_1 A = U \implies A = E_1^{-1} E_2^{-1} \cdots E_{k-1}^{-1} E_k^{-1} U$$

Ľ

• **SOLVING** *A***x** = **b VIA** *LU***-FACTORIZATION:**

<u>GIVEN</u>: $m \times n$ linear system $A\mathbf{x} = \mathbf{b}$ where **no row swaps are necessary**. <u>TASK</u>: Solve linear system via A = LU

- (1) Perform LU-Factorization of A (see previous slides)
- (2) Notice $A\mathbf{x} = \mathbf{b} \implies (LU)\mathbf{x} = \mathbf{b} \implies L(U\mathbf{x}) = \mathbf{b} \implies \text{Let } \mathbf{y} = U\mathbf{x}$
- (3) Solve square triangular system Ly = b for y via forward-solve
- (4) Solve triangular system $U\mathbf{x} = \mathbf{y}$ for \mathbf{x}
- If U is square, solve $U\mathbf{x} = \mathbf{y}$ via back-solve
- If U is non-square, solve $U\mathbf{x} = \mathbf{y}$ via Gauss-Jordan Elimination

(a) Find the LU-Factorization of A.

(b) Use A = LU to solve linear system $A\mathbf{x} = \mathbf{b}$, where $\mathbf{b} = \begin{bmatrix} -8\\ 23\\ -36 \end{bmatrix}$.

(c) Use
$$A = LU$$
 to solve linear system $A\mathbf{x} = \mathbf{b}$, where $\mathbf{b} = \begin{bmatrix} 6 \\ -25 \\ 10 \end{bmatrix}$.

C2015 Josh Engwer – Revised August 26, 2015

$$\boxed{\textbf{EX 2.4.2:}} \text{ Let } A = \begin{bmatrix} 3 & 1 & 0 & -1 & 1 \\ -12 & -2 & 4 & 5 & 1 \\ 9 & 9 & 9 & 0 & 24 \\ 0 & -4 & -11 & 2 & -5 \end{bmatrix}. \text{ Find the } LU\text{-Factorization of } A.$$

©2015 Josh Engwer – Revised August 26, 2015

EX 2.4.3: Let
$$A = \begin{bmatrix} 6 & -2 & 1 \\ 30 & -6 & 8 \\ -12 & -12 & -15 \\ 18 & -2 & 6 \end{bmatrix}$$
. Find the *LU*-Factorization of *A*.