SOLVING $A \mathrm{x}=\mathrm{b}$ WITH DIFFERENT b 's: $L U$-FACTORIZATION [LARSON 2.4]

- COMBINE ELEMENTARY ROW OPERATIONS:
(COMBINE) $\quad\left[\alpha R_{i}+R_{j} \rightarrow R_{j}\right] \quad$ Add scalar multiple α of row i to row j
- ELEMENTARY MATRICES:

A square matrix E is an elementary matrix if it can be obtained from identity matrix I by a single elem row op.

- ELEMENTARY MATRICES REPRESENTING COMBINE OPERATIONS:
$\left[5 R_{1}+R_{2} \rightarrow R_{2}\right]:\left[\begin{array}{lll}1 & 0 & 0 \\ 5 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], \quad\left[(-5) R_{2}+R_{3} \rightarrow R_{3}\right]:\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -5 & 1\end{array}\right]$

- INVERSE OF AN ELEMENTARY MATRIX:

If E is an elementary matrix, then E^{-1} exists and is an elementary matrix.
The inverse "undoes" the elementary row operation.
$\left[5 R_{1}+R_{2} \rightarrow R_{2}\right]:\left[\begin{array}{lll}1 & 0 & 0 \\ 5 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \quad$ has inverse $\quad\left[(-5) R_{1}+R_{2} \rightarrow R_{2}\right]:\left[\begin{array}{rrr}1 & 0 & 0 \\ -5 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

- TRIANGULAR MATRICES:

Lower Triangular: $\left[\begin{array}{ll}1 & \mathbf{0} \\ 3 & 4\end{array}\right],\left[\begin{array}{lll}1 & \mathbf{0} & \mathbf{0} \\ 4 & 5 & \mathbf{0}\end{array}\right],\left[\begin{array}{ll}1 & \mathbf{0} \\ 3 & 4 \\ 5 & 0\end{array}\right],\left[\begin{array}{lll}1 & \mathbf{0} & \mathbf{0} \\ 4 & 5 & \mathbf{0} \\ 0 & 8 & 0\end{array}\right], \cdots$
Upper Triangular: $\left[\begin{array}{ll}1 & 2 \\ \mathbf{0} & 4\end{array}\right],\left[\begin{array}{lll}1 & 0 & 3 \\ \mathbf{0} & 5 & 6\end{array}\right],\left[\begin{array}{ll}1 & 2 \\ \mathbf{0} & 4 \\ \mathbf{0} & \mathbf{0}\end{array}\right],\left[\begin{array}{lll}1 & 0 & 3 \\ \mathbf{0} & 0 & 6 \\ \mathbf{0} & \mathbf{0} & 9\end{array}\right], \ldots$

- UNIT TRIANGULAR MATRICES:

Unit Lower Triangular: $\left[\begin{array}{ll}\mathbf{1} & \mathbf{0} \\ 3 & \mathbf{1}\end{array}\right],\left[\begin{array}{lll}\mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{4} & \mathbf{1} & \mathbf{0}\end{array}\right],\left[\begin{array}{ll}\mathbf{1} & \mathbf{0} \\ 3 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{lll}\mathbf{1} & \mathbf{0} & \mathbf{0} \\ 1 & \mathbf{1} & \mathbf{0} \\ 0 & 8 & \mathbf{1}\end{array}\right], \ldots$

- $L U$-FACTORIZATION OF A MATRIX (PROCEDURE):

GIVEN: $m \times n$ matrix A where no row swaps are necessary.
TASK: Form $A=L U,(L$ is square unit lower triangular \& U is upper triangular)
(1) COMBINE to zero-out an entry below main diagonal: $\left[\alpha R_{i}+R_{j} \rightarrow R_{j}\right]$
(2) Form $m \times m$ elementary matrix corresponding to COMBINE operation: E
(3) Find the inverse of the elementary matrix: E^{-1}
(4) Repeat steps (1)-(3) for all such entries, top-to-bottom, left-to-right
(5) Resulting matrix is upper triangular: $U=E_{k} E_{k-1} \cdots E_{3} E_{2} E_{1} A$
(6) Determine $L: \quad E_{k} E_{k-1} \cdots E_{2} E_{1} A=U \Longrightarrow A=\underbrace{E_{1}^{-1} E_{2}^{-1} \cdots E_{k-1}^{-1} E_{k}^{-1}}_{L} U$

- SOLVING $A \mathrm{x}=\mathbf{b}$ VIA $L U$-FACTORIZATION:

GIVEN: $m \times n$ linear system $A \mathbf{x}=\mathbf{b}$ where no row swaps are necessary.
TASK: Solve linear system via $A=L U$
(1) Perform $L U$-Factorization of A (see previous slides)
(2) Notice $A \mathbf{x}=\mathbf{b} \Longrightarrow(L U) \mathbf{x}=\mathbf{b} \Longrightarrow L(U \mathbf{x})=\mathbf{b} \Longrightarrow$ Let $\mathbf{y}=U \mathbf{x}$
(3) Solve square triangular system $L \mathbf{y}=\mathbf{b}$ for \mathbf{y} via forward-solve
(4) Solve triangular system $U \mathbf{x}=\mathbf{y}$ for \mathbf{x}

- If U is square, solve $U \mathbf{x}=\mathbf{y}$ via back-solve
- If U is non-square, solve $U \mathbf{x}=\mathbf{y}$ via Gauss-Jordan Elimination

EX 2.4.1: Let $A=\left[\begin{array}{rrr}-2 & -1 & 0 \\ 8 & 9 & 1 \\ -6 & 7 & 8\end{array}\right]$.
(a) Find the $L U$-Factorization of A.
(b) Use $A=L U$ to solve linear system $A \mathbf{x}=\mathbf{b}$, where $\mathbf{b}=\left[\begin{array}{c}-8 \\ 23 \\ -36\end{array}\right]$.
(c) Use $A=L U$ to solve linear system $A \mathbf{x}=\mathbf{b}$, where $\mathbf{b}=\left[\begin{array}{c}6 \\ -25 \\ 10\end{array}\right]$.

EX 2.4.2: Let $A=\left[\begin{array}{rrrrr}3 & 1 & 0 & -1 & 1 \\ -12 & -2 & 4 & 5 & 1 \\ 9 & 9 & 9 & 0 & 24 \\ 0 & -4 & -11 & 2 & -5\end{array}\right]$. Find the $L U$-Factorization of A.

EX 2.4.3: Let $A=\left[\begin{array}{rrr}6 & -2 & 1 \\ 30 & -6 & 8 \\ -12 & -12 & -15 \\ 18 & -2 & 6\end{array}\right]$. Find the $L U$-Factorization of A.

