EX 3.1.2: Find the determinant of $A=\left[\begin{array}{cc}(1-\lambda) & 3 \\ 2 & (4-\lambda)\end{array}\right]$, where $\lambda \in \mathbb{R}$.
Since A is 2×2, just use the simple formula to find its determinant rather than a cofactor expansion:

$$
\operatorname{det}(A)=(1-\lambda)(4-\lambda)-(3)(2)=\left(4-5 \lambda+\lambda^{2}\right)-6=\lambda^{2}-5 \lambda-2
$$

EX 3.1.4: Find the determinant of $A=\left[\begin{array}{rrrrr}1 & 0 & 0 & 0 & 0 \\ -9 & 3 & 0 & 0 & 0 \\ 8 & -8 & -2 & 0 & 0 \\ 7 & 7 & 7 & 7 & 0 \\ 1 & -7 & 5 & -9 & -1\end{array}\right]$.
Observe that A is triangular, hence its determinant is simply the product of the main diagonal entries:

$$
\operatorname{det}(A)=a_{11} a_{22} a_{33} a_{44} a_{55}=(1)(3)(-2)(7)(-1)=42
$$

EX 3.1.5: Using a cofactor expansion, find the determinant of $A=\left[\begin{array}{rrrrr}0 & 3 & -2 & 0 & -1 \\ 0 & -4 & 5 & 0 & 0 \\ 0 & 1 & 0 & -3 & 5 \\ -2 & 0 & 0 & 0 & 3 \\ 0 & 1 & -1 & 0 & -1\end{array}\right]$.
Observe that A is a sparse matrix (i.e. A has lots of zeros.)
Since A is sparse, cofactor-expand along the row or column with the most zeros:

$$
\begin{aligned}
& \left.|A|=(0) C_{11}+(0) C_{21}+(0) C_{31}+(-2) C_{41}+(0) C_{51} \quad \text { (Cofactor Expansion along col } 1 \text { of } A\right) \\
& =(-2)(-1)^{4+1}\left|\begin{array}{rrrr}
3 & -2 & 0 & -1 \\
-4 & 5 & 0 & 0 \\
1 & 0 & -3 & 5 \\
1 & -1 & 0 & -1
\end{array}\right| \\
& \left.=(2)\left[(0) C_{13}^{[1]}+(0) C_{23}^{[1]}+(-3) C_{33}^{[1]}+(0) C_{43}^{[1]}\right] \quad \quad \text { (Cofactor Expansion along col } 3 \text { of } C_{41}\right) \\
& =(2)(-3)(-1)^{3+3}\left|\begin{array}{rrr}
3 & -2 & -1 \\
-4 & 5 & 0 \\
1 & -1 & -1
\end{array}\right| \quad \quad \text { (Definition of Cofactor } C_{33}^{[1]} \text { of matrix } C_{41} \text {) } \\
& \left.=(-6)\left[(-4) C_{21}^{[2]}+(5) C_{22}^{[2]}+(0) C_{23}^{[2]}\right] \quad \quad \text { (Cofactor Expansion along row } 2 \text { of } C_{33}^{[1]}\right) \\
& \left.=(-6)\left[(-4)(-1)^{2+1}\left|\begin{array}{ll}
-2 & -1 \\
-1 & -1
\end{array}\right|+(5)(-1)^{2+2}\left|\begin{array}{cc}
3 & -1 \\
1 & -1
\end{array}\right|\right] \quad \text { (Defn's of Cofactors } C_{21}^{[2]} \& C_{22}^{[2]} \text { of matrix } C_{33}^{[1]}\right) \\
& =(-6)[(4)[(-2)(-1)-(-1)(-1)]+(5)[(3)(-1)-(-1)(1)]] \quad \text { (Determinant Formula for } 2 \times 2 \text { matrices) } \\
& =(-6)[(4)(1)+(5)(-2)] \\
& =36
\end{aligned}
$$

REMARK: The superscripts in square brackets of cofactors (e.g. $C_{22}^{[2]}$) are there to prevent abuse of notation.

