DETERMINANTS: INTRO & COFACTOR EXPANSIONS [LARSON 3.1]

• DETERMINANT ("FIRST PRINCIPLES" DEFINITION):

Let linear system $A\mathbf{x} = \mathbf{b}$ be square & have a unique solution.

Then the denominator of the solution is called the **determinant** of matrix A, denoted |A| or det(A)

The denominator of a non-square matrix is undefined.

• **DETERMINANT OF A** 2 × 2 **SQUARE MATRIX:** Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ where $a, b, c, d \in \mathbb{R}$. Then:

$$\det(A) \equiv \left| \begin{array}{cc} a & b \\ c & d \end{array} \right| := ad - bc$$

• MINORS & COFACTORS OF A SQUARE MATRIX: Let A be a $n \times n$ square matrix. Then:

The (i, j)-minor M_{ij} of A is the determinant of matrix obtained by **removing** the i^{th} row & j^{th} column of A. The (i, j)-cofactor C_{ij} of A is $C_{ij} := (-1)^{i+j} M_{ij}$

e.g. Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
. Then:
 $C_{11} = (-1)^{1+1}M_{11} = (1) \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} = -3$ $C_{12} = (-1)^{1+2}M_{12} = (-1) \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} = 6$ $C_{13} = (-1)^{1+3}M_{13} = (1) \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} = -3$
 $C_{21} = (-1)^{2+1}M_{21} = (-1) \begin{vmatrix} 2 & 3 \\ 8 & 9 \end{vmatrix} = 6$ $C_{22} = (-1)^{2+2}M_{22} = (1) \begin{vmatrix} 1 & 3 \\ 7 & 9 \end{vmatrix} = -12$ $C_{23} = (-1)^{2+3}M_{23} = (-1) \begin{vmatrix} 1 & 2 \\ 7 & 8 \end{vmatrix} = 6$
 $C_{31} = (-1)^{3+1}M_{31} = (1) \begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix} = -3$ $C_{32} = (-1)^{3+2}M_{32} = (-1) \begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix} = 6$ $C_{33} = (-1)^{3+3}M_{33} = (1) \begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix} = -3$

• **DETERMINANT VIA COFACTOR EXPANSION:** Let A be a $n \times n$ square matrix. Then:

 $det(A) = \sum_{\substack{k=1\\n}}^{n} a_{ik}C_{ik} = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in} \qquad (i^{th} \text{ row cofactor expansion})$ $det(A) = \sum_{k=1}^{n} a_{kj}C_{kj} = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj} \qquad (j^{th} \text{ column cofactor expansion})$

e.g. Let
$$A = \begin{bmatrix} 4 & 3 & 3 \\ 1 & 1 & 2 \end{bmatrix}$$
. Then:
 $|A| = (0)C_{11} + (2)C_{12} + (1)C_{13}$ (Cofactor Expansion along row 1 of A)
 $= (0)C_{11} + (4)C_{21} + (1)C_{31}$ (Cofactor Expansion along col 1 of A)
 $= (4)C_{21} + (3)C_{22} + (3)C_{23}$ (Cofactor Expansion along row 2 of A)
 $= (2)C_{12} + (3)C_{22} + (1)C_{32}$ (Cofactor Expansion along col 2 of A)
 $= (1)C_{31} + (1)C_{32} + (2)C_{33}$ (Cofactor Expansion along col 3 of A)
 $= (1)C_{13} + (3)C_{23} + (2)C_{33}$ (Cofactor Expansion along col 3 of A)

- SPARSE MATRICES: A sparse matrix has at least several zeros.
 - Elementary, triangular and diagonal matrices are sparse matrices.
 - Cofactor Expansions are efficient for sparse matrices. It's best to expand along row/column with the most zeros
- **DENSE MATRICES:** A dense matrix has at most a couple zeros.
- **<u>DETERMINANT OF A TRIANGULAR MATRIX</u>**: Let A be a $n \times n$ triangular matrix. Then:

 $det(A) = a_{11}a_{22}a_{33}\cdots a_{nn}$ (i.e. determinant of a triangular matrix is the product of the diagonal entries)

 $\begin{bmatrix} 0 & 2 & 1 \end{bmatrix}$

^{©2015} Josh Engwer - Revised September 17, 2015

EX 3.1.1: Find the determinant of $A = \begin{bmatrix} -1 & -4 \\ 20 & 10 \end{bmatrix}$.

EX 3.1.2 Find the determinant of
$$A = \begin{bmatrix} (1-\lambda) & 3 \\ 2 & (4-\lambda) \end{bmatrix}$$
, where $\lambda \in \mathbb{R}$.

		5	0	2	
EX 3.1.3:	Using a cofactor expansion, find the determinant of ${\cal A}=$	-3	-1	4	
		-4	1	6	

[DV of t]]		$1 \\ -9$	0 3	0 0	0 0	0 0
EX 3.1.4:	Find the determinant of $A =$	8 7	-87	$-2 \\ 7$	0 7	0 0
		1	-7	5	-9	$^{-1}$.

©2015 Josh Engwer – Revised September 17, 2015

	0	3	-2	0	-1]
	0	-4	5	0	0	
<u>EX 3.1.5</u> : Using a cofactor expansion, find the determinant of $A =$	0	1	0	-3	5	
	-2	0	0	0	3	
	0	1	-1	0	-1	