EX 3.2.2: Using elementary row/column operations as appropriate, find the determinant of $A=\left[\begin{array}{rrrr}-12 & 85 & 60 & 18 \\ -1 & 7 & 5 & 3 \\ 3 & -24 & -21 & 12 \\ 4 & -27 & -17 & -13\end{array}\right]$.
Perform row operations until either a triangular matrix or matrix with a row or column of all zeros is attained:
$|A| \xrightarrow{R_{1} \leftrightarrow R_{2}}(-1)\left|\begin{array}{rrrr}-1 & 7 & 5 & 3 \\ -12 & 85 & 60 & 18 \\ 3 & -24 & -21 & 12 \\ 4 & -27 & -17 & -13\end{array}\right| \xrightarrow[\substack{3 R_{1}+R_{3} \rightarrow R_{3} \\ 4 R_{1}+R_{4} \rightarrow R_{4}}]{\substack{(-12) R_{1}+R_{2} \rightarrow R_{2}}}(-1)\left|\begin{array}{rrrr}-1 & 7 & 5 & 3 \\ 0 & 1 & 0 & -18 \\ 0 & -3 & -6 & 21 \\ 0 & 1 & 3 & -1\end{array}\right|$
$\xrightarrow[(-1) R_{2}+R_{4} \rightarrow R_{4}]{3 R_{2}+R_{3} \rightarrow R_{3}}(-1)\left|\begin{array}{rrrr}-1 & 7 & 5 & 3 \\ 0 & 1 & 0 & -18 \\ 0 & 0 & -6 & -33 \\ 0 & 0 & 3 & 17\end{array}\right| \xrightarrow{2 R_{4} \rightarrow R_{4}}(-1)\left(\frac{1}{2}\right)\left|\begin{array}{rrrr}-1 & 7 & 5 & 3 \\ 0 & 1 & 0 & -18 \\ 0 & 0 & -6 & -33 \\ 0 & 0 & 6 & 34\end{array}\right|$
$\xrightarrow{R_{3}+R_{4} \rightarrow R_{4}}(-1)\left(\frac{1}{2}\right)\left|\begin{array}{rrrr}-1 & 7 & 5 & 3 \\ 0 & 1 & 0 & -18 \\ 0 & 0 & -6 & -33 \\ 0 & 0 & 0 & 1\end{array}\right| \stackrel{(*)}{=}(-1)\left(\frac{1}{2}\right)[(-1)(1)(-6)(1)]=--3$
$(*)$ The final matrix is upper triangular, hence its determinant is the product of its main diagonal entries.

