DETERMINANTS: ELEM. ROW/COL OPERATIONS [LARSON 3.2]

- ELEMENTARY ROW OPERATIONS \& DETERMINANTS: Let A, B be $n \times n$ square matrices. Then:

$$
\begin{array}{ccccc}
\begin{array}{c}
\text { (ROW SWAP) }
\end{array} & \text { If } & A & \xrightarrow{R_{i} \leftrightarrow R_{j}} & B \text {, then } \operatorname{det}(B)=-\operatorname{det}(A) \\
\text { (ROW SCALE) } & \text { If } & A & \xrightarrow{\alpha R_{j} \rightarrow R_{j}} & B, \text { then } \operatorname{det}(B)=\alpha \operatorname{det}(A) \\
\text { (ROW COMBINE) } & \text { If } & A & \xrightarrow{\alpha R_{i}+R_{j} \rightarrow R_{j}} & B, \text { then } \operatorname{det}(B)=\operatorname{det}(A)
\end{array}
$$

i.e. Performing a row swap causes the determinant to change sign.
i.e. Performing a row scale by α causes the determinant to multiplied by α.
i.e. Performing a row combine causes the determinant to remain the same.

- ELEMENTARY COLUMN OPERATIONS \& DETERMINANTS: Let A, B be $n \times n$ square matrices. Then:

$$
\begin{array}{ccccc}
\begin{array}{c}
\text { (COLUMN SWAP) }
\end{array} & \text { If } & A & \xrightarrow{C_{i} \leftrightarrow C_{j}} & B, \text { then } \operatorname{det}(B)=-\operatorname{det}(A) \\
\text { (COLUMN SCALE) } & \text { If } & A & \xrightarrow{\alpha C_{j} \rightarrow C_{j}} & B, \operatorname{then} \operatorname{det}(B)=\alpha \operatorname{det}(A) \\
\text { (COLUMN COMBINE) } & \text { If } & A & \xrightarrow{\alpha C_{i}+C_{j} \rightarrow C_{j}} & B, \operatorname{then} \operatorname{det}(B)=\operatorname{det}(A)
\end{array}
$$

- ROW-EQUIVALENT \& COLUMN-EQUIVALENT MATRICES: Let A, B be $n \times n$ matrices. Then:
A and B are row-equivalent if B can be obtained from A by elementary row operations.
A and B are column-equivalent if B can be obtained from A by elementary column operations.
Moreover, if A and B are row-equivalent or column-equivalent, then $\operatorname{det}(B)=\beta \operatorname{det}(A)$ where $\beta \neq 0$.
- MATRICES WITH A ZERO DETERMINANT: Let A be a $n \times n$ square matrix. Then:
(Z1) If an entire row of A consists of all zeros, then $\operatorname{det}(A)=0$
(Z2) If an entire column of A consists of all zeros, then $\operatorname{det}(A)=0$
(Z3) If two rows of A are equal, then $\operatorname{det}(A)=0$
(Z4) If two columns of A are equal, then $\operatorname{det}(A)=0$
(Z5) If one row of A is a multiple of another row of A, then $\operatorname{det}(A)=0$
(Z6) If one column of A is a multiple of another column of A, then $\operatorname{det}(A)=0$
- FINDING DETERMINANTS VIA ELEMENTARY ROW/COLUMN OPERATIONS:

GIVEN: $n \times n$ square dense matrix A
TASK: Find the determinant of A
(1) Perform elem. row or column op's until one of the following is attained:

* A matrix with a either a row or column consisting of all zeros (whose determinant is zero)
* A triangular matrix (whose determinant is simply the product of its main diagonal entries)
(\star) Keep track of each scalar factor resulting from a SWAP or SCALE operation.
(\star) For consistency, it's best to use only row operations - column operations are never used again in this course.

- COFACTOR EXPANSIONS VERSUS ELEMENTARY ROW/COLUMN OPERATIONS:

For large $n \times n$ square dense matrices $(n \geq 4)$, elem row operations require far less work than a cofactor expansion:

	COFACTOR EXPANSION		ELEM. ROW OPERATIONS	
n	ADDITIONS	MULTIPLICATIONS	ADDITIONS	MULTIPLICATIONS
2	1	2	1	3
3	5	9	5	10
4	23	40	14	23
5	119	205	30	44
\vdots	\vdots	\vdots	\vdots	\vdots
10	$\mathbf{3 , 6 2 8 , 7 9 9}$	$\mathbf{6 , 2 3 5 , 3 0 0}$	285	339

Even for computers, finding 10×10 determinants are significantly faster using elementary row operations!

EX 3.2.1: Find the determinants of $A=\left[\begin{array}{lllll}3 & 0 & 2 & 3 & 2 \\ 1 & 0 & 1 & 1 & 1 \\ 8 & 0 & 7 & 6 & 9 \\ 6 & 0 & 8 & 7 & 4 \\ 5 & 0 & 4 & 4 & 3\end{array}\right]$ and $B=\left[\begin{array}{lllll}3 & 1 & 2 & 3 & 2 \\ 1 & 1 & 1 & 1 & 1 \\ 8 & 7 & 7 & 6 & 9 \\ 6 & 2 & 4 & 6 & 4 \\ 5 & 5 & 4 & 4 & 3\end{array}\right]$

EX 3.2.2: Using elementary row/column operations as appropriate, find the determinant of $A=\left[\begin{array}{rrrr}-12 & 85 & 60 & 18 \\ -1 & 7 & 5 & 3 \\ 3 & -24 & -21 & 12 \\ 4 & -27 & -17 & -13\end{array}\right]$.

EX 3.2.3: Using elementary row/column operations as appropriate, find the determinant of $A=\left[\begin{array}{rrrr}8 & 2 & -3 & 1 \\ 32 & -8 & -21 & 12 \\ 4 & -5 & -4 & 3 \\ 160 & -40 & -105 & 60\end{array}\right]$.
(C)2015 Josh Engwer - Revised September 17, 2015

