DETERMINANTS: ELEM. ROW/COL OPERATIONS [LARSON 3.2]

• **ELEMENTARY ROW OPERATIONS & DETERMINANTS:** Let A, B be $n \times n$ square matrices. Then:

(ROW SWAP)	If	A	$\xrightarrow{R_i \leftrightarrow R_j}$	B , then $\det(B) = -\det(A)$
(ROW SCALE)	If	A	$\xrightarrow{\alpha R_j \to R_j}$	B , then $det(B) = \alpha det(A)$
(ROW COMBINE)	If	A	$\xrightarrow{\alpha R_i + R_j \rightarrow R_j}$	B , then $\det(B) = \det(A)$

i.e. Performing a row swap causes the determinant to change sign.

i.e. Performing a row scale by α causes the determinant to multiplied by α .

i.e. Performing a row combine causes the determinant to remain the same.

• ELEMENTARY COLUMN OPERATIONS & DETERMINANTS: Let A, B be $n \times n$ square matrices. Then:

(COLUMN SWAP)	If	A	$\xrightarrow{C_i\leftrightarrow C_j}$	B , then $\det(B) = -\det(A)$
(COLUMN SCALE)	If	A	$\xrightarrow{\alpha C_j \to C_j}$	B , then $det(B) = \alpha det(A)$
(COLUMN COMBINE)	If	A	$\xrightarrow{\alpha C_i + C_j \to C_j}$	B , then $\det(B) = \det(A)$

• ROW-EQUIVALENT & COLUMN-EQUIVALENT MATRICES: Let A, B be $n \times n$ matrices. Then:

A and B are **row-equivalent** if B can be obtained from A by elementary row operations.

A and B are **column-equivalent** if B can be obtained from A by elementary column operations.

Moreover, if A and B are row-equivalent or column-equivalent, then $det(B) = \beta det(A)$ where $\beta \neq 0$.

• MATRICES WITH A ZERO DETERMINANT: Let A be a $n \times n$ square matrix. Then:

- (Z1) If an entire row of A consists of all zeros, then det(A) = 0
- (Z2) If an entire column of A consists of all zeros, then det(A) = 0
- (Z3) If two rows of A are equal, then det(A) = 0
- (Z4) If two columns of A are equal, then det(A) = 0
- (Z5) If one row of A is a multiple of another row of A, then det(A) = 0
- (Z6) If one column of A is a multiple of another column of A, then det(A) = 0

• FINDING DETERMINANTS VIA ELEMENTARY ROW/COLUMN OPERATIONS:

<u>GIVEN:</u> $n \times n$ square **dense matrix** A

<u>TASK:</u> Find the determinant of A

- (1) Perform elem. row or column op's until one of the following is attained:
 - * A matrix with a either a row or column consisting of all zeros (whose determinant is zero)
 - * A triangular matrix (whose determinant is simply the product of its main diagonal entries)
- (\star) Keep track of each scalar factor resulting from a **SWAP** or **SCALE** operation.
- (\star) For consistency, it's best to use only row operations column operations are never used again in this course.

• COFACTOR EXPANSIONS VERSUS ELEMENTARY ROW/COLUMN OPERATIONS:

For large $n \times n$ square **dense matrices** $(n \ge 4)$, elem row operations require far less work than a cofactor expansion:

	COFACT	OR EXPANSION	ELEM. RO	W OPERATIONS
n	ADDITIONS	MULTIPLICATIONS	ADDITIONS	MULTIPLICATIONS
2	1	2	1	3
3	5	9	5	10
4	23	40	14	23
5	119	205	30	44
:		:	•	:
10	$3,\!628,\!799$	$6,\!235,\!300$	285	339

Even for computers, finding 10×10 determinants are significantly faster using elementary row operations!

^{©2015} Josh Engwer – Revised September 17, 2015

<u>EX 3.2.1</u> : Find the determinants of $A =$	3	0	2	3	2		3	1	2	3	2]
	1	0	1	1	1		1	1	1	1	1	
<u>EX 3.2.1</u> : Find the determinants of $A =$	8	0	$\overline{7}$	6	9	and $B =$	8	$\overline{7}$	7	6	9	
	6	0	8	7	4		6	2	4	6	4	
	5	0	4	4	3		5	5	4	4	3	

	$\begin{bmatrix} -12 \\ -1 \end{bmatrix}$	85	60	18	
EX 3.2.2: Using elementary row/column operations as appropriate, find the determinant of $A =$	-1	7	5	3	
$\underline{\mathbf{D}} \mathbf{X} \mathbf{J} \mathbf{J} \mathbf{Z} \mathbf{Z} \mathbf{Z}$ Using elementary row/column operations as appropriate, and the determinant of $A =$	3	-24	-21	12	·
	4	-27	-17	-13	

	20	2 -8	$-3 \\ -21$	
<u>EX 3.2.3</u> Using elementary row/column operations as appropriate, find the determinant of $A =$	4	-5	$-4 \\ -105$	3

©2015 Josh Engwer – Revised September 17, 2015