DETERMINANTS: PRODUCTS, INVERSES, TRANSPOSES [LARSON 3.3]

• **DETERMINANTS OF PRODUCTS & TRANSPOSES:** Let A, B be $n \times n$ square matrices and $\alpha \neq 0$. Then:

(D1)	AB = A B	(Determinant of a Matrix Product)
(D2)	$ \alpha A = \alpha^n A $	(Determinant of a Scalar Product)
(D3)	$ A^T = A $	(Determinant of a Transpose)

• **DETERMINANTS OF EXTENDED MATRIX PRODUCTS:** Let A_1, A_2, \ldots, A_k be $n \times n$ matrices. Then:

(D4) $|A_1A_2\cdots A_k| = |A_1||A_2|\cdots |A_k|$ (Determinant of an Extended Product)

• **DETERMINANTS OF POWERS:** Let A be $n \times n$ square matrix and $k \ge 2$ be a **positive integer**. Then:

$$(D5) \quad |A^k| = |A|^k$$

(Determinant of a Power)

• DETERMINANT "DETERMINES" INVERTIBILITY OF A MATRIX:

A square matrix A is invertible $\iff |A| \neq 0$

• **DETERMINANTS OF INVERSES:** Let A be a $n \times n$ invertible square matrix. Then:

(D6)
$$|A^{-1}| = \frac{1}{|A|}$$
 (Determinant of an Inverse)

• DETERMINANTS OF SUMS OR DIFFERENCES (WARNING): In general, $|A \pm B| \neq |A| \pm |B|$:

Consider
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & -5 \\ 4 & 4 \end{bmatrix} \implies |A| = -2$ and $|B| = 32$
Then $A + B = \begin{bmatrix} 4 & -3 \\ 7 & 8 \end{bmatrix}$ and $A - B = \begin{bmatrix} -2 & 7 \\ -1 & 0 \end{bmatrix}$
$$\implies |A + B| = 53 \neq -2 + 32 = |A| + |B|$$
$$\implies |A - B| = 7 \neq -2 - 32 = |A| - |B|$$

• EQUIVALENT CONDITIONS FOR AN INVERTIBLE SQUARE MATRIX:

Let A be a $n \times n$ square matrix. Then the following are equivalent:

 $\cdot \ A$ is invertible

- · $A\mathbf{x}=\mathbf{b}$ has a \mathbf{unique} soln for every RHS column vector \mathbf{b}
- · $A\mathbf{x} = \vec{\mathbf{0}}$ has only the **trivial** soln $\mathbf{x} = \vec{\mathbf{0}}$ (i.e. $x_1 = 0, x_2 = 0, \dots, x_n = 0$)
- \cdot A is row-equivalent to the identity matrix I
- \cdot A can be written as a product of ${\bf elementary}$ matrices
- $\cdot |A| \neq 0$

<u>NOTATION:</u> $\vec{0}$ denotes the **column vector** with all entries being **zero**.

$$\underbrace{\mathbf{EX 3.3.1:}}_{\mathbf{Let }A} \text{ Let } A = \begin{bmatrix} -1 & 28 & -9 & 0 & 54 \\ 0 & 2 & 78 & 99 & 61 \\ 0 & 0 & 1 & -8 & 17 \\ 0 & 0 & 0 & -3 & 77 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 5 & 43 & -7 & 16 & -6 \\ 0 & 1 & 88 & 99 & 47 \\ 0 & 0 & -1 & 91 & 81 \\ 0 & 0 & 0 & 2 & 55 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix}.$$

- (a) Compute |A| and |B|.
- (b) Compute $|A^T|$ and $|B^T|$.
- (c) Compute |2A| and $\left|\frac{1}{3}B\right|$.
- (d) Compute |AB| and |BA|.
- (e) Compute $|A^3|$ and $|B^8|$.
- (f) Compute $|A^{-1}|$ and $|B^{-1}|$.