EX 4.2.2: Show that $S:=\left\{\left[\begin{array}{ccc}1 & a_{12} & a_{13} \\ 0 & 1 & a_{23} \\ 0 & 0 & 1\end{array}\right]: a_{12}, a_{13}, a_{23} \in \mathbb{R}\right\}$ is not a vector space.
Three ways are shown below, but remember only one is sufficient to show $S$ is not a vector space.
METHOD 1: Show that the $3 \times 3$ zero matrix is not in $S$ :
$O_{3 \times 3}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \Longrightarrow$ Main diagonal entries of $O_{3 \times 3}$ are not all ones $\Longrightarrow O_{3 \times 3} \notin S \Longrightarrow$ Zero Matrix is not contained
METHOD 2: Show that some cleverly-chosen matrix is in $S$ but its additive inverse is not in $S$ :
Let $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right] \Longrightarrow-A=\left[\begin{array}{rrr}-1 & -2 & -2 \\ 0 & -1 & -2 \\ 0 & 0 & -1\end{array}\right] \Longrightarrow A \in S$ and $-A \notin S \Longrightarrow$ Additive Inverse is not closed
METHOD 3: Show that some cleverly-chosen matrices are in $S$ but their sum is not in $S$ :
Let $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \Longrightarrow A+B=\left[\begin{array}{lll}2 & 2 & 2 \\ 0 & 2 & 2 \\ 0 & 0 & 2\end{array}\right] \Longrightarrow A, B \in S$ and $A+B \notin S$
$\Longrightarrow$ Matrix Addition is not closed
METHOD 4: Show that some cleverly-chosen matrix is in $S$ but some clever-chosen scalar multiple is not in $S$ :
Let $B=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 1\end{array}\right] \Longrightarrow 2 B=\left[\begin{array}{lll}2 & 4 & 6 \\ 0 & 2 & 6 \\ 0 & 0 & 2\end{array}\right] \Longrightarrow B \in S$ and $2 B \notin S \Longrightarrow$ Scalar Multiplication is not closed

EX 4.2.3: Show that $S:=\left\{\left[\begin{array}{ccc}0 & a_{12} & a_{13} \\ 0 & 0 & a_{23} \\ 0 & 0 & 0\end{array}\right]: a_{12}, a_{13}, a_{23} \geq 0\right\}$ is not a vector space.
Notice that the matrix vector is in $S: O_{3 \times 3}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \in S($ since all entries above main diagonal are $\geq 0)$
Moreover, matrix addition is indeed closed in $S$ :
Let $A=\left[\begin{array}{ccc}0 & a_{12} & a_{13} \\ 0 & 0 & a_{23} \\ 0 & 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ccc}0 & b_{12} & b_{13} \\ 0 & 0 & b_{23} \\ 0 & 0 & 0\end{array}\right]$ such that $\begin{array}{cc}a_{12}, a_{13}, a_{23} \geq 0 \\ \text { and } & \text { Then, } A, B \in S \\ & b_{12}, b_{13}, b_{23} \geq 0\end{array}$
Moreover, $A+B=\left[\begin{array}{ccc}0 & \left(a_{12}+b_{12}\right) & \left(a_{13}+b_{13}\right) \\ 0 & 0 & \left(a_{23}+b_{23}\right) \\ 0 & 0 & 0\end{array}\right]$ and $\begin{aligned} & a_{12}+b_{12} \geq 0 \\ & a_{13}+b_{13} \geq 0 \\ & a_{23}+b_{23} \geq 0\end{aligned} \quad \Longrightarrow A+B \in S \quad \therefore$ Matrix Addition is closed
Therefore, one of the below ways is necessary to show $S$ is not a vector space.
METHOD 1: Show that some cleverly-chosen matrix is in $S$ but its additive inverse is not in $S$ :
Let $A=\left[\begin{array}{lll}0 & 2 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right] \Longrightarrow-A=\left[\begin{array}{rrr}0 & -2 & -2 \\ 0 & 0 & -2 \\ 0 & 0 & 0\end{array}\right] \Longrightarrow A \in S$ and $-A \notin S \Longrightarrow$ Additive Inverse is not closed
METHOD 2: Show that some cleverly-chosen matrix is in $S$ but some clever-chosen scalar multiple is not in $S$ :
Let $B=\left[\begin{array}{lll}0 & 2 & 3 \\ 0 & 0 & 3 \\ 0 & 0 & 0\end{array}\right] \Longrightarrow(-2) B=\left[\begin{array}{rrr}0 & -4 & -6 \\ 0 & 0 & -6 \\ 0 & 0 & 0\end{array}\right] \Longrightarrow B \in S$ and $(-2) B \notin S \Longrightarrow$ Scalar Multiplication is not closed

EX 4.2.4: Show that $S:=\left\{a t^{2}+b t+c: a\right.$ is divisible by 2 and $\left.b, c \in \mathbb{R}\right\}$ is not a vector space.

Notice that the zero quadratic is in $S: z(t)=0 t^{2}+0 t+0 \Longrightarrow \begin{aligned} & a=0 \\ & b=0 \\ & c=0\end{aligned} \Longrightarrow \begin{gathered}a \text { is divisible by } 2 \\ b \in \mathbb{R} \\ c \in \mathbb{R}\end{gathered} \quad \Longrightarrow z(t) \in S$

Moreover, every additive inverse is in $S$ : $a$ is divisible by 2

$$
\text { Let } p(t)=a t^{2}+b t+c \text { such that } \quad b \in \mathbb{R} \quad \text { Then, } p(t) \in S
$$

$$
c \in \mathbb{R}
$$

$$
\text { Hence, }-p(t)=(-a) t^{2}+(-b) t+(-c) \Longrightarrow \quad \begin{gathered}
-a \text { is divisible by } 2 \\
-b \in \mathbb{R} \\
-c \in \mathbb{R}
\end{gathered} \quad \Longrightarrow \quad \therefore \text { Additive inverse is closed }
$$

Further still, every polynomial sum is in $S$ :

$$
\text { Let } \begin{array}{ccc}
p(t)=a_{1} t^{2}+b_{1} t+c_{1} \\
q(t)=a_{2} t^{2}+b_{2} t+c_{2} & \text { such that } & a_{1}, a_{2} \\
& b_{1}, b_{2} \in \mathbb{R} & \text { are each divisible by } 2 \\
c_{1}, c_{2} \in \mathbb{R} & \text { Then, } p(t), q(t) \in S
\end{array}
$$

Hence, $p(t)+q(t)=\left(a_{1}+a_{2}\right) t^{2}+\left(b_{1}+b_{2}\right) t+\left(c_{1}+c_{2}\right) \Longrightarrow \begin{gathered}\left(a_{1}+a_{2}\right) \text { is divisible by } 2 \\ \left(b_{1}+b_{2}\right) \in \mathbb{R} \\ \left(c_{1}+c_{2}\right) \in \mathbb{R}\end{gathered} \quad \Longrightarrow \quad \therefore$ Polynomial Addition is closed

Therefore, the only way that works is to show scalar multiplication is not closed.
METHOD 1: Show that some cleverly-chosen quadratic is in $S$ but some cleverly-chosen scalar multiple is not in $S$ :
Let $q(t)=2 t^{2}+2 t+2 \Longrightarrow\left(\frac{\pi}{2}\right) q(t)=\pi t^{2}+\pi t+\pi \Longrightarrow q(t) \in S$ and $\left(\frac{\pi}{2}\right) q(t) \notin S \Longrightarrow$ Scalar Multiplication is not closed (Note that $\left(\frac{\pi}{2}\right) q(t) \notin S$ since $\pi$ is not divisible by 2 )
(Notice that $2 q(t) \in S, 3 q(t) \in S$, etc... This illustrates that sometimes a clever choice of the scalar is critical.)

