VECTOR SPACES [LARSON 4.2]

- VECTOR SPACE (DEFINITION): Let V be a set on which vector addition and scalar mult. are well-defined.

Then V is a vector space if these axioms hold $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $\forall \alpha, \beta \in \mathbb{R}$:

$\mathbf{u}+\mathbf{v} \in V$	(Closure under Addition)
$\alpha \mathbf{v} \in V$	(Closure under Scalar Multiplication)
$\overrightarrow{\mathbf{0}} \in V$	(Containment of the Zero Vector)
$\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$	(Commutativity of Vector Addition)
$\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$	(Associativity of Vector Addition)
$\mathbf{v}+\overrightarrow{\mathbf{0}}=\mathbf{v}$	(Additive Identity = Zero Vector)
$\mathbf{v}+(-\mathbf{v})=\overrightarrow{\mathbf{0}}$	(Vector + Its Additive Inverse = Additive Identity)
$\alpha(\mathbf{u}+\mathbf{v})=\alpha \mathbf{u}+\alpha \mathbf{v}$	(Scalar Mult. Distributes over Vector Addition)
$(\alpha+\beta) \mathbf{v}=\alpha \mathbf{v}+\beta \mathbf{v}$	(Scalar Mult. Distributes over Scalar Addition)
$\alpha(\beta \mathbf{v})=(\alpha \beta) \mathbf{v}$	(Associativity of Scalar Multiplication)
$1(\mathbf{v})=\mathbf{v}$	(Scalar Multiplicative Identity)

- COMMON VECTOR SPACES:

$$
\begin{aligned}
\mathbb{R} & \equiv \text { Set of all real numbers (scalars) } \\
\mathbb{R}^{n} & \equiv \text { Set of all ordered } n \text {-tuples (} n \text {-wide vectors) } \\
\mathbb{R}^{m \times n} & \equiv \text { Set of all } m \times n \text { matrices } \\
P_{n} & \equiv \text { Set of all polynomials of degree } n \text { or less } \\
C[a, b] & \equiv \text { Set of all continuous functions on }[a, b] \\
C^{1}[a, b] & \equiv \text { Set of all differentiable functions on }[a, b] \\
C^{2}[a, b] & \equiv \text { Set of all twice-differentiable functions on }[a, b] \\
C(-\infty, \infty) & \equiv \text { Set of all continuous functions on }(-\infty, \infty) \text { [i.e. continuous everywhere }]
\end{aligned}
$$

REMARK: Always assume that the operations of vector addition \& scalar multiplication are the standard definitions.

- EXAMPLE VECTORS \& ZERO VECTORS IN COMMON VECTOR SPACES:

VECTOR SPACE	"VECTOR" LABELS	EXAMPLE "VECTORS"	"ZERO VECTOR"
\mathbb{R}	a, b, c	Scalars: $1,-3 / 2, \sqrt{2}, \pi$	0
\mathbb{R}^{2}	$\mathbf{u}, \mathbf{v}, \mathbf{w}$	2 -Wide Vectors: $(1,1),(-3,4),(\sqrt{2}, \pi)$	$\overrightarrow{\mathbf{0}}=(0,0)$
\mathbb{R}^{3}	$\mathbf{u}, \mathbf{v}, \mathbf{w}$	3-Wide Vectors: $(1,1,1),(\sqrt{2}, \pi,-1)$	$\mathbf{0}=(0,0,0)$
$\mathbb{R}^{3 \times 2}$	A, B, C	3×2 Matrices: $\left[\begin{array}{cc}1 & 2 \\ -3 & \sqrt{5} \\ -\pi & 1 / 6\end{array}\right]$	$O_{3 \times 2}=\left[\begin{array}{cc}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]$
$\mathbb{R}^{2 \times 2}$	A, B, C	2×2 Matrices: $\left[\begin{array}{cc}1 & 2 \\ -3 & \sqrt{5}\end{array}\right]$	$O_{2 \times 2}=\left[\begin{array}{cc}0 & 0 \\ 0 & 0\end{array}\right]$
P_{1}	p, q, r	Polynomials: $3,4-2 t$	$z(t)=0+0 t$
P_{2}	p, q, r	Polynomials: $3,4-2 t, 5+t-7 t^{2}$	$z(t)=0+0 t+0 t^{2}$
P_{3}	p, q, r	Polynomials: $3-4 t+2 t^{2}+5 t^{3}$	$z(t)=0+0 t+0 t^{2}+0 t^{3}$
$C[0,1]$	f, g, h	Functions: $x^{2}, \sin x, \sqrt{1+x}, \frac{1}{x-2}$	$z(x)=0$ on $[0,1]$
$C(-\infty, \infty)$	f, g, h	Functions: $x^{2}, \sin x, e^{x}, \sqrt[3]{x},\|x\|$	$z(x)=0$
$C^{1}(-\infty, \infty)$	f, g, h	Functions: $x^{2}, \sin x, e^{x}$	$z(x)=0$

- SHOWING THAT A SET IS NOT A VECTOR SPACE: $\quad(\exists \equiv$ "There exists at least one ...")

A set S is not a vector space if at least one of the following is true:

- The zero vector is not in the set: $\overrightarrow{\mathbf{0}} \notin S$
- The additive inverse is not in the set: $\mathbf{v} \in S$ and $-\mathbf{v} \notin S$
- Closure of Vector Addition fails: $\exists \mathbf{u}, \mathbf{v} \in S$ such that $\mathbf{u}+\mathbf{v} \notin S$
- Closure of Scalar Multiplication fails: $\exists \mathbf{v} \in S, \alpha \in \mathbb{R}$ such that $\alpha \mathbf{v} \notin S$

EX 4.2.1: Show that $S:=\left\{\left[\begin{array}{c}x_{1} \\ x_{1} \\ 1+x_{1}\end{array}\right]: x_{1} \in \mathbb{R}\right\}$ is not a vector space.

EX 4.2.2: Show that $S:=\left\{\left[\begin{array}{ccc}1 & a_{12} & a_{13} \\ 0 & 1 & a_{23} \\ 0 & 0 & 1\end{array}\right]: a_{12}, a_{13}, a_{23} \in \mathbb{R}\right\}$ is not a vector space.

EX 4.2.3: Show that $S:=\left\{\left[\begin{array}{ccc}0 & a_{12} & a_{13} \\ 0 & 0 & a_{23} \\ 0 & 0 & 0\end{array}\right]: a_{12}, a_{13}, a_{23} \geq 0\right\}$ is not a vector space.

EX 4.2.4: Show that $S:=\left\{a t^{2}+b t+c: a\right.$ is divisible by 2 and $\left.b, c \in \mathbb{R}\right\}$ is not a vector space.

