VECTOR SPACES [LARSON 4.2]

• VECTOR SPACE (DEFINITION): Let V be a set on which vector addition and scalar mult. are well-defined.

Then V is a vector space if these <u>axioms</u> hold $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $\forall \alpha, \beta \in \mathbb{R}$:

$\mathbf{u} + \mathbf{v} \in V$	(Closure under Addition)
$\alpha \mathbf{v} \in V$	(Closure under Scalar Multiplication)
$ec{0} \in V$	(Containment of the Zero Vector)
$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$	(Commutativity of Vector Addition)
$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$	(Associativity of Vector Addition)
$\mathbf{v} + \vec{0} = \mathbf{v}$	(Additive Identity = Zero Vector)
$\mathbf{v} + (-\mathbf{v}) = \vec{0}$	(Vector + Its Additive Inverse = Additive Identity)
$\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$	(Scalar Mult. Distributes over Vector Addition)
$(\alpha + \beta)\mathbf{v} = \alpha \mathbf{v} + \beta \mathbf{v}$	(Scalar Mult. Distributes over Scalar Addition)
$\alpha(\beta \mathbf{v}) = (\alpha \beta) \mathbf{v}$	(Associativity of Scalar Multiplication)
$1(\mathbf{v}) = \mathbf{v}$	(Scalar Multiplicative Identity)

• <u>COMMON VECTOR SPACES</u>:

<u>REMARK</u>: Always assume that the operations of vector addition & scalar multiplication are the standard definitions.

• EXAMPLE VECTORS & ZERO VECTORS IN COMMON VECTOR SPACES:

VECTOR SPACE	"VECTOR" LABELS	EXAMPLE "VECTORS"	"ZERO VECTOR"
R	a, b, c	Scalars: $1, -3/2, \sqrt{2}, \pi$	0
\mathbb{R}^2	$\mathbf{u}, \mathbf{v}, \mathbf{w}$	2-Wide Vectors: $(1, 1), (-3, 4), (\sqrt{2}, \pi)$	$\vec{0} = (0,0)$
\mathbb{R}^{3}	$\mathbf{u}, \mathbf{v}, \mathbf{w}$	3-Wide Vectors: $(1, 1, 1), (\sqrt{2}, \pi, -1)$	$\vec{0} = (0,0,0)$
$\mathbb{R}^{3 \times 2}$	A, B, C	$3 \times 2 \text{ Matrices:} \begin{bmatrix} 1 & 2 \\ -3 & \sqrt{5} \\ -\pi & 1/6 \end{bmatrix}$	$O_{3\times 2} = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right]$
$\mathbb{R}^{2 imes 2}$	A, B, C	$2 \times 2 \text{ Matrices:} \begin{bmatrix} 1 & 2 \\ -3 & \sqrt{5} \end{bmatrix}$	$O_{2\times 2} = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right]$
P1	p,q,r	Polynomials: $3, 4 - 2t$	z(t) = 0 + 0t
P_2	p,q,r	Polynomials: $3, 4 - 2t, 5 + t - 7t^2$	$z(t) = 0 + 0t + 0t^2$
P_3	p,q,r	Polynomials: $3 - 4t + 2t^2 + 5t^3$	$z(t) = 0 + 0t + 0t^2 + 0t^3$
C[0, 1]	f,g,h	Functions: x^2 , $\sin x$, $\sqrt{1+x}$, $\frac{1}{x-2}$	z(x) = 0 on $[0, 1]$
$C(-\infty,\infty)$	f,g,h	Functions: x^2 , $\sin x$, e^x , $\sqrt[3]{x}$, $ x $	z(x) = 0
$C^1(-\infty,\infty)$	f,g,h	Functions: x^2 , $\sin x$, e^x	z(x) = 0

• **<u>SHOWING THAT A SET IS NOT A VECTOR SPACE</u>**: $(\exists \equiv "There exists at least one ...")$

A set S is <u>**not**</u> a vector space if at least one of the following is true:

- The zero vector is not in the set: $\vec{\mathbf{0}} \notin S$

- The additive inverse is not in the set: $\mathbf{v} \in S$ and $-\mathbf{v} \notin S$

- Closure of Vector Addition fails: $\exists \mathbf{u}, \mathbf{v} \in S$ such that $\mathbf{u} + \mathbf{v} \notin S$
- Closure of Scalar Multiplication fails: $\exists \mathbf{v} \in S, \alpha \in \mathbb{R}$ such that $\alpha \mathbf{v} \notin S$

©2015 Josh Engwer - Revised September 28, 2015

EX 4.2.1: Show that
$$S := \left\{ \begin{bmatrix} x_1 \\ x_1 \\ 1+x_1 \end{bmatrix} : x_1 \in \mathbb{R} \right\}$$
 is not a vector space.

	$\left(\right)$	1	a_{12}	a_{13}		
EX 4.2.2: Show that $S :=$	{	0	1	a_{23}	$: a_{12}, a_{13}, a_{23} \in \mathbb{R}$	is $\underline{\text{not}}$ a vector space.
		0	0	1	ļ	

	([0	a_{12}	a_{13}	
<u>EX 4.2.3</u> : Show that $S :=$	{ 0	0	a_{23}	$: a_{12}, a_{13}, a_{23} \ge 0$ is <u>not</u> a vector space.
	llo	0	0	

EX 4.2.4: Show that $S := \{at^2 + bt + c : a \text{ is divisible by } 2 \text{ and } b, c \in \mathbb{R}\}$ is <u>not</u> a vector space.

C2015Josh Engwer – Revised September 28, 2015