EX 4.3.1: Show: $W=\left\{p(t) \in P_{3}: p^{\prime}(1)=0\right\}$ is a subspace of P_{3}.
Clearly, $W \subseteq P_{3}$ (since every element of W is also an element of P_{3})
Observe that the zero cubic polynomial $z(t)=0 t^{3}+0 t^{2}+0 t+0 \in W$ since $z^{\prime}(1)=0$
Let $p(t), q(t) \in W$ and $\alpha \in \mathbb{R}$. Then $p^{\prime}(1)=0$ and $q^{\prime}(1)=0$.
$\Longrightarrow[p+q]^{\prime}(1)=p^{\prime}(1)+q^{\prime}(1)=0+0=0 \Longrightarrow p(t)+q(t) \in W \Longrightarrow$ Polynomial Addition is closed in W
$\Longrightarrow[\alpha p]^{\prime}(1)=\alpha p^{\prime}(1)=\alpha(0)=0 \Longrightarrow \alpha p(t) \in W \Longrightarrow$ Scalar Multiplication is closed in W

Therefore, W is a subspace of P_{3}.
EX 4.3.2: Show that the set of all 3×3 lower triangular matrices is a subspace of $\mathbb{R}^{3 \times 3}$.
Let W be the set of all 3×3 lower triangular matrices. Then $W=\left\{\left[\begin{array}{ccc}a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33}\end{array}\right]: a_{11}, \ldots, a_{33} \in \mathbb{R}\right\}$
Clearly, $W \subseteq \mathbb{R}^{3 \times 3}$ (since every element of W is also an element of $\mathbb{R}^{3 \times 3}$)
Observe that the zero matrix $O_{3 \times 3}=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \in W$ since it's 3×3 lower triangular
Let $A=\left[\begin{array}{ccc}a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33}\end{array}\right], B=\left[\begin{array}{ccc}b_{11} & 0 & 0 \\ b_{21} & b_{22} & 0 \\ b_{31} & b_{32} & b_{33}\end{array}\right]$ and $\alpha \in \mathbb{R}$. Then $A, B \in W$.
$\Longrightarrow A+B=\left[\begin{array}{ccc}\left(a_{11}+b_{11}\right) & 0 & 0 \\ \left(a_{21}+b_{21}\right) & \left(a_{22}+b_{22}\right) & 0 \\ \left(a_{31}+b_{31}\right) & \left(a_{32}+b_{32}\right) & \left(a_{33}+b_{33}\right)\end{array}\right] \Longrightarrow A+B \in W \Longrightarrow$ Matrix Addition is closed in W
$\Longrightarrow \alpha B=\left[\begin{array}{ccc}\alpha b_{11} & 0 & 0 \\ \alpha b_{21} & \alpha b_{22} & 0 \\ \alpha b_{31} & \alpha b_{32} & \alpha b_{33}\end{array}\right] \Longrightarrow \alpha B \in W \Longrightarrow$ Scalar Multiplication is closed in W
Therefore, W is a subspace of $\mathbb{R}^{3 \times 3}$.
EX 4.3.3: Show that the set of all 3×3 unit lower triangular matrices is not a subspace of $\mathbb{R}^{3 \times 3}$.
Let W be the set of all $3 \times 3 \underline{\text { unit }}$ lower triangular matrices. Then $W=\left\{\left[\begin{array}{ccc}1 & 0 & 0 \\ a_{21} & 1 & 0 \\ a_{31} & a_{32} & 1\end{array}\right]: a_{21}, a_{31}, a_{32} \in \mathbb{R}\right\}$
Clearly, $W \subseteq \mathbb{R}^{3 \times 3}$ (since every element of W is also an element of $\mathbb{R}^{3 \times 3}$)
Three ways are shown below, but remember only one is sufficient to show W is not a subspace.
METHOD 1: Show that the 3×3 zero matrix is not in W :
$O_{3 \times 3}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \Longrightarrow$ Main diagonal entries of $O_{3 \times 3}$ are not all ones $\Longrightarrow O_{3 \times 3} \notin W$
METHOD 2: Show that matrix addition is not closed in W :
Let $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ a_{21} & 1 & 0 \\ a_{31} & a_{32} & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 0 & 0 \\ b_{21} & 1 & 0 \\ b_{31} & b_{32} & 1\end{array}\right] \Longrightarrow A+B=\left[\begin{array}{ccc}2 & 0 & 0 \\ \left(a_{21}+b_{21}\right) & 2 & 0 \\ \left(a_{31}+b_{31}\right) & \left(a_{32}+b_{32}\right) & 2\end{array}\right] \notin W$
METHOD 3: Show that scalar multiplication is not closed in W :
Let $B=\left[\begin{array}{ccc}1 & 0 & 0 \\ b_{21} & 1 & 0 \\ b_{31} & b_{32} & 1\end{array}\right]$ and $\alpha \neq 1 \Longrightarrow \alpha B=\left[\begin{array}{ccc}\alpha & 0 & 0 \\ \alpha b_{21} & \alpha & 0 \\ \alpha b_{31} & \alpha b_{32} & \alpha\end{array}\right] \notin W$ (since main diagonal entries $\neq 1$)

EX 4.3.4: Show: $W=\left\{\left[\begin{array}{c}x_{1} \\ 0\end{array}\right]: x_{1} \in \mathbb{R}\right\}$ is a subspace of \mathbb{R}^{2}.
Clearly, $W \subseteq \mathbb{R}^{2}$ (since every element of W is also an element of \mathbb{R}^{2})
Observe that the zero vector $\overrightarrow{\mathbf{0}}=\left[\begin{array}{l}0 \\ 0\end{array}\right] \in W$ since $2^{n d}$ component of $\overrightarrow{\mathbf{0}}$ is zero
Let $\mathbf{u}, \mathbf{v} \in W$ and $\alpha \in \mathbb{R}$. Then $\mathbf{u}=\left[\begin{array}{c}u_{1} \\ 0\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}v_{1} \\ 0\end{array}\right]$ where $u_{1}, v_{1} \in \mathbb{R}$
$\Longrightarrow \mathbf{u}+\mathbf{v}=\left[\begin{array}{c}\left(u_{1}+v_{1}\right) \\ 0\end{array}\right] \Longrightarrow \mathbf{u}+\mathbf{v} \in W \Longrightarrow$ Vector Addition is closed in W
$\Longrightarrow \alpha \mathbf{v}=\left[\begin{array}{c}\alpha v_{1} \\ 0\end{array}\right] \Longrightarrow \alpha \mathbf{v} \in W \Longrightarrow$ Scalar Multiplication is closed in W
Therefore, W is a subspace of \mathbb{R}^{2}.
EX 4.3.5: Show: $W=\left\{\left[\begin{array}{c}x_{1} \\ 1\end{array}\right]: x_{1} \in \mathbb{R}\right\}$ is not a subspace of \mathbb{R}^{2}.
Clearly, $W \subseteq \mathbb{R}^{2}$ (since every element of W is also an element of \mathbb{R}^{2})
Three ways are shown below, but remember only one is sufficient to show W is not a subspace.
METHOD 1: Show that the zero vector is not in W :
$\overrightarrow{\mathbf{0}}=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Longrightarrow 2^{\text {nd }}$ component of $\overrightarrow{\mathbf{0}}$ is not one $\Longrightarrow \overrightarrow{\mathbf{0}} \notin W$
METHOD 2: Show that vector addition is not closed in W :
Let $\mathbf{u}=\left[\begin{array}{c}u_{1} \\ 1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}v_{1} \\ 1\end{array}\right] \Longrightarrow \mathbf{u}+\mathbf{v}=\left[\begin{array}{c}\left(u_{1}+v_{1}\right) \\ 2\end{array}\right] \notin W \quad\left(\right.$ since $2^{\text {nd }}$ component $\left.\neq 1\right)$
METHOD 3: Show that scalar multiplication is not closed in W :
Let $\mathbf{v}=\left[\begin{array}{c}v_{1} \\ 1\end{array}\right]$ and $\alpha \neq 1 \Longrightarrow \alpha \mathbf{v}=\left[\begin{array}{c}\alpha v_{1} \\ \alpha\end{array}\right] \notin W \quad\left(\right.$ since $2^{\text {nd }}$ component $\left.\neq 1\right)$
EX 4.3.6: Show: $W=\left\{p(t) \in P_{3}: \int_{1}^{2} p(t) d t=3\right\}$ is not a subspace of P_{3}.
Clearly, $W \subseteq P_{3} \quad$ (since every element of W is also an element of P_{3})
Three ways are shown below, but remember only one is sufficient to show W is not a subspace.
METHOD 1: Show that the zero cubic polynomial is not in $W: \quad$ (Here, $k \in \mathbb{R}$ is an arbitrary constant of integration.)

$$
z(t)=0 t^{3}+0 t^{2}+0 t+0 \Longrightarrow \int_{1}^{2} z(t) d t=\int_{1}^{2} 0 d t=[k]_{t=1}^{t=2} \stackrel{F T C}{=} k-k=0 \Longrightarrow \int_{1}^{2} z(t) d t \neq 3 \Longrightarrow z(t) \notin W
$$

METHOD 2: Show that polynomial addition is not closed in W :
Let $p(t), q(t) \in W . \quad$ Then $\int_{1}^{2} p(t) d t=3$ and $\int_{1}^{2} q(t) d t=3$
$\Longrightarrow \int_{1}^{2}[p(t)+q(t)] d t=\int_{1}^{2} p(t) d t+\int_{1}^{2} q(t) d t=3+3=6$
$\Longrightarrow \int_{1}^{2}[p(t)+q(t)] d t \neq 3 \Longrightarrow p(t)+q(t) \notin W$
METHOD 3: Show that scalar multiplication is not closed in W :
Let $q(t) \in W$ and $\alpha \neq 1 . \quad$ Then $\int_{1}^{2} q(t) d t=3$

$$
\begin{aligned}
& \Longrightarrow \int_{1}^{2} \alpha q(t) d t=\alpha \int_{1}^{2} q(t) d t=\alpha(3)=3 \alpha \neq 3 \\
& \Longrightarrow \int_{1}^{2} \alpha q(t) d t \neq 3 \Longrightarrow \alpha q(t) \notin W
\end{aligned}
$$

