- SUBSPACE OF A VECTOR SPACE (DEFINITION):

Let V be a vector space.
Then a nonempty set W is a subspace of V if the following all hold:

$$
\begin{array}{ll}
W \subseteq V & (W \text { is a subset of } V) \\
\overrightarrow{\mathbf{0}} \in W & (W \text { contains the zero vector }) \\
& \\
\mathbf{u}, \mathbf{v} \in W \Longrightarrow \mathbf{u}+\mathbf{v} \in W & (W \text { is closed under vector addition }) \\
\mathbf{v} \in W, \alpha \in \mathbb{R} \Longrightarrow \alpha \mathbf{v} \in W & (W \text { is closed under scalar multiplication })
\end{array}
$$

- TRIVIAL SUBSPACES OF A VECTOR SPACE:

Let V be a vector space. Then $\{\overrightarrow{\boldsymbol{0}}\}$ and V are the two trivial subspaces of V.
REMARK: $\{\overrightarrow{\boldsymbol{0}}\}$ is sometimes called the zero subspace.

- THE INTERSECTION OF TWO SUBSPACES IS A SUBSPACE:

Let W_{1}, W_{2} both be subspaces of vector space V. Then, $W_{1} \cap W_{2}$ is a subspace of V.

- ESTABLISHING THAT A SET IS NOT A SUBSPACE:

W is not a subspace of vector space V if at least one of the following is true:

- W is not a subset of $V: \quad W \nsubseteq V$
- The zero vector is not in W : $\overrightarrow{\mathbf{0}} \notin W$
- Closure of Vector Addition fails: $\exists \mathbf{u}, \mathbf{v} \in W$ such that $\mathbf{u}+\mathbf{v} \notin W$
- Closure of Scalar Multiplication fails: $\exists \mathbf{v} \in W, \alpha \in \mathbb{R}$ such that $\quad \alpha \mathbf{v} \notin W$

- LINEARITY OF DIFFERENTIATION (REVIEW FROM CALCULUS):

Let $f, g \in C^{k}[a, b]$ where $k \geq 1$ is an integer and $\alpha \in \mathbb{R}$. Then:

$$
\begin{aligned}
& {[f+g]^{\prime}(x) \equiv \frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x}[f(x)]+\frac{d}{d x}[g(x)] \equiv f^{\prime}(x)+g^{\prime}(x)} \\
& {[\alpha f]^{\prime}(x) \equiv \frac{d}{d x}[\alpha f(x)] \quad \alpha \frac{d}{d x}[f(x)] \equiv \alpha f^{\prime}(x)} \\
& {[f+g]^{(k)}(x) \equiv \frac{d^{k}}{d x^{k}}[f(x)+g(x)]=\frac{d^{k}}{d x^{k}}[f(x)]+\frac{d^{k}}{d x^{k}}[g(x)] \equiv f^{(k)}(x)+g^{(k)}(x)} \\
& {[\alpha f]^{(k)}(x) \equiv \frac{d^{k}}{d x^{k}}[\alpha f(x)] \quad \alpha \frac{d^{k}}{d x^{k}}[f(x)] \quad \equiv \alpha f^{(k)}(x)}
\end{aligned}
$$

- LINEARITY OF INTEGRATION (REVIEW FROM CALCULUS):

Let $f, g \in C[a, b]$ and $\alpha \in \mathbb{R}$. Then:

$$
\begin{aligned}
\int_{a}^{b}[f(x)+g(x)] d x & =\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x \\
\int_{a}^{b}[\alpha f(x)] d x & =\alpha \int_{a}^{b} f(x) d x
\end{aligned}
$$

EX 4.3.1: Show: $W=\left\{p(t) \in P_{3}: p^{\prime}(1)=0\right\}$ is a subspace of P_{3}.

EX 4.3.2: Show that the set of all 3×3 lower triangular matrices is a subspace of $\mathbb{R}^{3 \times 3}$.

EX 4.3.3: Show that the set of all 3×3 unit lower triangular matrices is not a subspace of $\mathbb{R}^{3 \times 3}$.

EX 4.3.4: Show: $W=\left\{\left[\begin{array}{c}x_{1} \\ 0\end{array}\right]: x_{1} \in \mathbb{R}\right\}$ is a subspace of \mathbb{R}^{2}.

EX 4.3.5: Show: $W=\left\{\left[\begin{array}{c}x_{1} \\ 1\end{array}\right]: x_{1} \in \mathbb{R}\right\}$ is not a subspace of \mathbb{R}^{2}.

EX 4.3.6: Show: $W=\left\{p(t) \in P_{3}: \int_{1}^{2} p(t) d t=3\right\}$ is not a subspace of P_{3}.

