SUBSPACES [LARSON 4.3]

• SUBSPACE OF A VECTOR SPACE (DEFINITION):

Let V be a vector space.

Then a nonempty set W is a **subspace** of V if the following all hold:

$W\subseteq V$	(W is a subset of V)
$\vec{0} \in W$	(W contains the zero vector)

 $\mathbf{u}, \mathbf{v} \in W \implies \mathbf{u} + \mathbf{v} \in W$ (W is closed under vector addition) $\mathbf{v} \in W, \alpha \in \mathbb{R} \implies \alpha \mathbf{v} \in W$ (W is closed under scalar multiplication)

• TRIVIAL SUBSPACES OF A VECTOR SPACE:

Let V be a vector space. Then $\{\vec{0}\}$ and V are the two **trivial subspaces** of V. <u>REMARK:</u> $\{\vec{0}\}$ is sometimes called the **zero subspace**.

• THE INTERSECTION OF TWO SUBSPACES IS A SUBSPACE:

Let W_1, W_2 both be subspaces of vector space V. Then, $W_1 \cap W_2$ is a subspace of V.

• ESTABLISHING THAT A SET IS NOT A SUBSPACE:

W is <u>not</u> a subspace of vector space V if at least one of the following is true:

- -W is not a subset of V: $W \not\subseteq V$
- The zero vector is not in W: $\vec{\mathbf{0}} \notin W$
- Closure of Vector Addition fails: $\exists \mathbf{u}, \mathbf{v} \in W$ such that $\mathbf{u} + \mathbf{v} \notin W$
- Closure of Scalar Multiplication fails: $\exists \mathbf{v} \in W, \alpha \in \mathbb{R}$ such that $\alpha \mathbf{v} \notin W$

• LINEARITY OF DIFFERENTIATION (REVIEW FROM CALCULUS):

Let $f, g \in C^k[a, b]$ where $k \ge 1$ is an integer and $\alpha \in \mathbb{R}$. Then:

$$\begin{split} [f+g]'(x) &\equiv \frac{d}{dx} \Big[f(x) + g(x) \Big] &= \frac{d}{dx} \Big[f(x) \Big] + \frac{d}{dx} \Big[g(x) \Big] &\equiv f'(x) + g'(x) \\ &[\alpha f]'(x) &\equiv \frac{d}{dx} \Big[\alpha f(x) \Big] &= \alpha \frac{d}{dx} \Big[f(x) \Big] &\equiv \alpha f'(x) \\ &[f+g]^{(k)}(x) &\equiv \frac{d^k}{dx^k} \Big[f(x) + g(x) \Big] &= \frac{d^k}{dx^k} \Big[f(x) \Big] + \frac{d^k}{dx^k} \Big[g(x) \Big] &\equiv f^{(k)}(x) + g^{(k)}(x) \\ &[\alpha f]^{(k)}(x) &\equiv \frac{d^k}{dx^k} \Big[\alpha f(x) \Big] &= \alpha \frac{d^k}{dx^k} \Big[f(x) \Big] &\equiv \alpha f^{(k)}(x) \end{split}$$

• LINEARITY OF INTEGRATION (REVIEW FROM CALCULUS):

Let $f, g \in C[a, b]$ and $\alpha \in \mathbb{R}$. Then:

$$\int_{a}^{b} \left[f(x) + g(x) \right] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$
$$\int_{a}^{b} \left[\alpha f(x) \right] dx = \alpha \int_{a}^{b} f(x) dx$$

©2015 Josh Engwer - Revised September 28, 2015

<u>EX 4.3.1</u>: Show: $W = \{p(t) \in P_3 : p'(1) = 0\}$ is a subspace of P_3 .

<u>EX 4.3.2</u> Show that the set of all 3×3 lower triangular matrices is a subspace of $\mathbb{R}^{3 \times 3}$.

<u>EX 4.3.3</u> Show that the set of all 3×3 <u>unit</u> lower triangular matrices is <u>not</u> a subspace of $\mathbb{R}^{3\times 3}$.

C2015Josh Engwer – Revised September 28, 2015

EX 4.3.4: Show:
$$W = \left\{ \begin{bmatrix} x_1 \\ 0 \end{bmatrix} : x_1 \in \mathbb{R} \right\}$$
 is a subspace of \mathbb{R}^2 .

 $\boxed{\textbf{EX 4.3.5:}} \text{ Show: } W = \left\{ \left[\begin{array}{c} x_1 \\ 1 \end{array} \right] : x_1 \in \mathbb{R} \right\} \text{ is } \underline{\text{not}} \text{ a subspace of } \mathbb{R}^2.$

<u>EX 4.3.6</u>: Show: $W = \{p(t) \in P_3 : \int_1^2 p(t) dt = 3\}$ is <u>not</u> a subspace of P_3 .