$\underline{\text { EX 4.4.3: }}$ Let $\mathbf{u}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $S=\left\{\left[\begin{array}{r}1 \\ 3 \\ -3\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{r}-3 \\ -9 \\ 9\end{array}\right]\right\} \equiv\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\} \subseteq \mathbb{R}^{3}$.
(a) Write \mathbf{u} as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, if possible.
(b) Is $\mathbf{u} \in \operatorname{span}(S)$?

$$
\begin{aligned}
& {[A \mid \mathbf{u}]=\left[\begin{array}{ccc|c}
\mid & \mid & \mid & \mid \\
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} & \mathbf{u} \\
\mid & \mid & \mid & \mid
\end{array}\right]=\left[\begin{array}{rrr|r}
\hline 1 & 3 & -3 & 1 \\
3 & 2 & -9 & 2 \\
-3 & 3 & 9 & 3
\end{array}\right] \xrightarrow[3 R_{1}+R_{3} \rightarrow R_{3}]{(-3) R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{rrr|r}
\hline 1 & 3 & -3 & 1 \\
0 & -7 & 0 & -1 \\
0 & 12 & 0 & 6
\end{array}\right] \xrightarrow{R_{2} \leftrightarrow R_{3}}\left[\begin{array}{rrrrr}
{[1} & 3 & -3 & 1 \\
0 & 12 & 0 & 6 \\
0 & -7 & 0 & -1
\end{array}\right]} \\
& \xrightarrow{\left(\frac{1}{12}\right) R_{2} \rightarrow R_{2}}\left[\begin{array}{ccr|r}
11 & 3 & -3 & 1 \\
0 & 1 & 0 & 1 / 2 \\
0 & -7 & 0 & -1
\end{array}\right] \xrightarrow{7 R_{2}+R_{3} \rightarrow R_{3}}\left[\begin{array}{rrr|r}
\boxed{1} & 3 & -3 & 1 \\
0 & 1 & 0 & 1 / 2 \\
0 & 0 & 0 & 5 / 2
\end{array}\right] \Longrightarrow 0=5 / 2 \leftarrow \text { CONTRADICTION! }
\end{aligned}
$$

\therefore (a) Desired linear combination is not possible
(b) No, $\mathbf{u} \notin \operatorname{span}(S)$ since \mathbf{u} is not a linear combination of the vectors in S

EX 4.4.4: Let $r(t)=3 t+2$ and $S=\left\{2 t^{2}-3 t+6,4 t^{2}+t, t^{2}+5 t-1\right\} \equiv\left\{p_{1}(t), p_{2}(t), p_{3}(t)\right\} \subseteq P_{2}$.
(a) Write $r(t)$ as a linear combination of $p_{1}(t), p_{2}(t), p_{3}(t)$, if possible.
(b) Is $r(t) \in \operatorname{span}(S)$?
$\left[\begin{array}{ccc|c}\mid & \mid & \mid & \mid \\ p_{1}(t) & p_{2}(t) & p_{3}(t) & r(t) \\ \mid & \mid & \mid & \mid\end{array}\right]=\left[\begin{array}{rrr|r}2 & 4 & 1 & 0 \\ -3 & 1 & 5 & 3 \\ 6 & 0 & -1 & 2\end{array}\right] \xrightarrow[2 R_{2} \rightarrow R_{2}]{3 R_{1} \rightarrow R_{1}}\left[\begin{array}{rrr|r}6 & 12 & 3 & 0 \\ -6 & 2 & 10 & 6 \\ 6 & 0 & -1 & 2\end{array}\right] \xrightarrow[(-1) R_{1}+R_{3} \rightarrow R_{3}]{R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{rrr|r}6 & 12 & 3 & 0 \\ 0 & 14 & 13 & 6 \\ 0 & -12 & -4 & 2\end{array}\right]$
$\xrightarrow[\left(\frac{1}{2}\right) R_{2} \rightarrow R_{2}]{\left(\frac{1}{6}\right) R_{1} \rightarrow R_{1}}\left[\begin{array}{crr|r}\boxed{1} & 2 & 1 / 2 & 0 \\ 0 & 7 & 13 / 2 & 3 \\ 0 & -6 & -2 & 1\end{array}\right] \xrightarrow{R_{3}+R_{2} \rightarrow R_{2}}\left[\begin{array}{ccc|c}\boxed{1} & 2 & 1 / 2 & 0 \\ 0 & \boxed{1} & 9 / 2 & 4 \\ 0 & -6 & -2 & 1\end{array}\right] \xrightarrow{6 R_{2}+R_{3} \rightarrow R_{3}}\left[\begin{array}{ccc|c}\left.\begin{array}{|c|c|c|c|}1 & 2 & 1 / 2 & 0 \\ 0 & \boxed{1} & 9 / 2 & 4 \\ 0 & 0 & 25 & 25\end{array}\right]\end{array}\right.$
$\xrightarrow{\left(\frac{1}{25}\right) R_{3} \rightarrow R_{3}}\left[\begin{array}{ccc|c}1 & 2 & 1 / 2 & 0 \\ 0 & 1 & 9 / 2 & 4 \\ 0 & 0 & \boxed{1} & 1\end{array}\right] \xrightarrow[\left(-\frac{1}{2}\right) R_{3}+R_{1} \rightarrow R_{1}]{\left(-\frac{9}{2}\right) R_{3}+R_{2} \rightarrow R_{2}}\left[\begin{array}{ccc|c}1 & 2 & 0 & -1 / 2 \\ 0 & \boxed{1} & 0 & -1 / 2 \\ 0 & 0 & \boxed{1} & 1\end{array}\right] \xrightarrow{(-2) R_{2}+R_{1} \rightarrow R_{1}}\left[\begin{array}{rrrr|r}\hline 1 & 0 & 0 & 1 / 2 \\ 0 & 1 & 0 & -1 / 2 \\ 0 & 0 & 1 & 1\end{array}\right]$
\therefore (a) $r(t)=\frac{1}{2} p_{1}(t)-\frac{1}{2} p_{2}(t)+p_{3}(t)$
(b) Yes, $r(t) \in \operatorname{span}(S)$ since $r(t)$ is a linear combination of the polynomials in S

EX 4.4.5: Let $r(t)=-8 t^{2}-16 t+24$ and $S=\left\{t^{2}+2 t-3,-4 t^{2}-8 t+12,2 t^{2}+4 t-6\right\} \equiv\left\{p_{1}(t), p_{2}(t), p_{3}(t)\right\} \subseteq P_{2}$.
(a) Write $r(t)$ as a linear combination of $p_{1}(t), p_{2}(t), p_{3}(t)$, if possible.
(b) Is $r(t) \in \operatorname{span}(S)$?

$$
[A \mid r(t)]=\left[\begin{array}{rrr|r}
\boxed{1} & -4 & 2 & -8 \\
2 & -8 & 4 & -16 \\
-3 & 12 & -6 & 24
\end{array}\right] \xrightarrow[\sim]{3 R_{1}+R_{3} \rightarrow R_{3}}\left[\begin{array}{rrr|r}
\boxed{1} & -4 & 2 & -8 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] . \text { Let }\left\{\begin{array}{r}
c_{2}=s \\
c_{3}=\widetilde{t}
\end{array} \quad \begin{array}{r}
c_{1}-4 c_{2}+2 c_{3}=-8 \\
\Longrightarrow c_{1}-4 s+2 \widetilde{t}=-8 \\
\Longrightarrow c_{1}=-8+4 s-2 \widetilde{t}
\end{array}\right.
$$

$\therefore\left(c_{1}, c_{2}, c_{3}\right)=(-8+4 s-2 \widetilde{t}, s, \widetilde{t}) \quad$ Pick convenient values for $s, \widetilde{t}: \quad$ Let $s=\tilde{t}=0$. Then $\left(c_{1}, c_{2}, c_{3}\right)=(-8,0,0)$
\therefore (a) $r(t)=(-8) p_{1}(t)+(0) p_{2}(t)+(0) p_{3}(t)$
(b) Yes, $r(t) \in \operatorname{span}(S)$ since $r(t)$ is a linear combination of the polynomials in S

EX 4.4.6: Let $r(t)=3 t^{2}+t+5$ and $S=\left\{t^{2}+2 t-3, \quad-4 t^{2}-8 t+12,2 t^{2}+4 t-6\right\} \equiv\left\{p_{1}(t), p_{2}(t), p_{3}(t)\right\} \subseteq P_{2}$.
(a) Write $r(t)$ as a linear combination of $p_{1}(t), p_{2}(t), p_{3}(t)$, if possible. (b) Is $r(t) \in \operatorname{span}(S)$?

\therefore (a) Desired linear combination is not possible
(b) No, $r(t) \notin \operatorname{span}(S)$ since $r(t)$ is not a linear combination of the polynomials in S

