EX 4.4.10: Let $S=\left\{2 t^{2}-3 t+6,4 t^{2}+t, t^{2}+5 t-1\right\} \equiv\left\{p_{1}(t), p_{2}(t), p_{3}(t)\right\} \subseteq P_{2}$.
(a) Does S span P_{2} ?
(b) Is S linearly independent or dependent?
$A=\left[\begin{array}{ccc}\mid & \mid & \mid \\ p_{1}(t) & p_{2}(t) & p_{3}(t) \\ \mid & \mid & \mid\end{array}\right]=\left[\begin{array}{rrr}2 & 4 & 1 \\ -3 & 1 & 5 \\ 6 & 0 & -1\end{array}\right] \xrightarrow[2 R_{2} \rightarrow R_{2}]{3 R_{1} \rightarrow R_{1}}\left[\begin{array}{rrr}6 & 12 & 3 \\ -6 & 2 & 10 \\ 6 & 0 & -1\end{array}\right] \xrightarrow[(-1) R_{1}+R_{3} \rightarrow R_{3}]{R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{rrr}6 & 12 & 3 \\ 0 & 14 & 13 \\ 0 & -12 & -4\end{array}\right]$
$\xrightarrow[\left(-\frac{1}{4}\right) R_{3} \rightarrow R_{3}]{\left(\frac{1}{3}\right) R_{1} \rightarrow R_{1}}\left[\begin{array}{rrr}2 & 4 & 1 \\ 0 & 14 & 13 \\ 0 & 3 & 1\end{array}\right] \xrightarrow[14 R_{3} \rightarrow R_{3}]{3 R_{2} \rightarrow R_{2}}\left[\begin{array}{rrr}2 & 4 & 1 \\ 0 & 42 & 39 \\ 0 & 42 & 14\end{array}\right] \xrightarrow{(-1) R_{2}+R_{3} \rightarrow R_{3}}\left[\begin{array}{rrr}2 & 4 & 1 \\ 0 & 42 & 39 \\ 0 & 0 & -25\end{array}\right] \xrightarrow[\left(-\frac{1}{25}\right) R_{3} \rightarrow R_{3}]{\left(\frac{1}{3}\right) R_{2} \rightarrow R_{2}}\left[\begin{array}{rcc}2 & 4 & 1 \\ 0 & 14 & 13 \\ 0 & 0 & 1\end{array}\right]$
$\xrightarrow[(-1) R_{3}+R_{1} \rightarrow R_{1}]{(-13) R_{3}+R_{2} \rightarrow R_{2}}\left[\begin{array}{ccc}2 & 4 & 0 \\ 0 & 14 & 0 \\ 0 & 0 & \boxed{1}\end{array}\right] \xrightarrow[\left(\frac{1}{14}\right) R_{2} \rightarrow R_{2}]{\left(\frac{1}{2}\right) R_{1} \rightarrow R_{1}}\left[\begin{array}{ccc}\boxed{1} & 2 & 0 \\ 0 & \boxed{1} & 0 \\ 0 & 0 & 1\end{array}\right] \xrightarrow{(-2) R_{2}+R_{1} \rightarrow R_{1}}\left[\begin{array}{ccc}\hline 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\operatorname{RREF}(A)$
(a) Since every row of $\operatorname{RREF}(A)$ has a pivot, \mathcal{S} spans P_{2}.
(b) Since every column of $\operatorname{RREF}(A)$ has a pivot, \mathcal{S} is linearly independent.

EX 4.4.11: Let $S=\left\{t^{2}+2 t-3,-4 t^{2}-8 t+12, \quad 2 t^{2}+4 t-6\right\} \equiv\left\{p_{1}(t), p_{2}(t), p_{3}(t)\right\} \subseteq P_{2}$.
(a) Does S span P_{2} ?
(b) Is S linearly independent or dependent?

$$
A=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
p_{1}(t) & p_{2}(t) & p_{3}(t) \\
\mid & \mid & \mid
\end{array}\right]=\left[\begin{array}{ccc}
\boxed{1} & -4 & 2 \\
2 & -8 & 4 \\
-3 & 12 & -6
\end{array}\right] \xrightarrow[3 R_{1}+R_{3} \rightarrow R_{3}]{\substack{(-2) R_{1}+R_{2} \rightarrow R_{2}}}\left[\begin{array}{|ccc}
\boxed{1} & -4 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\operatorname{RREF}(A)
$$

(a) Since at least one row of $\operatorname{RREF}(A)$ has no pivot, \mathcal{S} does not span P_{2}.
(b) Since at least one column of $\operatorname{RREF}(A)$ has no pivot, \mathcal{S} is not linearly independent.

Moreover:
Column 2 of $\operatorname{RREF}(A)$ implies that $p_{2}(t)=(-4) p_{1}(t)$
Column 3 of $\operatorname{RREF}(A)$ implies that $p_{3}(t)=2 p_{1}(t)$

