- LINEAR COMBINATIONS OF VECTORS: Let V be a vector space.

Then a vector $\mathbf{u} \in V$ is represented as a linear combination of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in V$ if \mathbf{u} can be written as

$$
\mathbf{u}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k}
$$

where scalars $c_{1}, c_{2}, \ldots, c_{k} \in \mathbb{R}$

- FINDING A LINEAR COMBINATION (SIMPLIFIED PROCEDURE):

TASK: Write $\mathbf{u} \in V$ as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in V$.
(1) Let $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{k}\right) \subseteq \mathbb{R}^{k}$ be unknown scalars such that $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k}=\mathbf{u}$
(2) Solve the linear system $A \mathbf{c}=\mathbf{u}$ for \mathbf{c} using Gauss-Jordan on $[A \mid \mathbf{u}]=\left[\begin{array}{ccc|c}\mid & & \mid & \mid \\ \mathbf{v}_{1} & \cdots & \mathbf{v}_{k} & \mathbf{u} \\ \mid & & \mid & \mid\end{array}\right]$
(\star) If there are infinitely many solutions, let the parameters t, s, \ldots be any values (e.g. Let $t=1, s=0, \ldots$)
(\star) If there are no solutions, it's not possible to write \mathbf{u} as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$
NOTE: For polynomials, form each column of matrix A using the coefficients of each polynomial.

- SPANNING SET OF A VECTOR SPACE:

Let V be a vector space and $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\} \subseteq V$
Then the span of S is the set of all linear combination of vectors in S :

$$
\operatorname{span}(S) \equiv \operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}:=\left\{c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k}: c_{1}, c_{2}, \cdots, c_{k} \in \mathbb{R}\right\}
$$

Moreover, S spans V if $\operatorname{span}(S)=V$.
i.e. S spans V if every vector of V can be written as a linear combination of vectors in S.

- A SPANNING SET IS A SUBSPACE:

Let V be a vector space and $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\} \subseteq V$
Then $\operatorname{span}(S)$ is a subspace of V. Moreover, $\operatorname{span}(S)$ is the smallest subspace of V that contains S.

- LINEAR INDEPENDENCE OF A SET OF VECTORS: Let V be a vector space and $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\} \subseteq V$

Then S is called linearly independent if the vector equation

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k}=\overrightarrow{\mathbf{0}}
$$

has only the trivial solution (of all zeros): $c_{1}=0, c_{2}=0, \cdots, c_{k}=0$
If there are also nontrivial solutions, then S is called linearly dependent.

- SPANNING SET \& LINEAR INDEPENDENCE TESTS (SIMPLIFIED PROCEDURE):

TASK: Determine whether $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}$ spans vector space V and/or S is linearly independent.
(1) Form matrix A with $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}$ as its columns: $A=\left[\begin{array}{cccc}\mid & \mid & & \mid \\ \mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{k} \\ \mid & \mid & & \mid\end{array}\right]$
(2) Perform Gauss-Jordan Elimination on matrix $A: \quad A \xrightarrow{\text { Gauss-Jordan }} \operatorname{RREF}(A)$
(*) If every row of $\operatorname{RREF}(A)$ contains a pivot, then S spans V.
(\star) If $\operatorname{RREF}(A)$ contains row(s) of all zeros, then S does not span V.
(\star) If every column of $\operatorname{RREF}(A)$ contains a pivot, S is linearly independent.
(\star) If $\operatorname{RREF}(A)$ contains column(s) without a pivot, S is linearly dependent.
Non-pivot columns of A are linear combinations of pivot columns of A.
Such linear comb's are expressed in the non-pivot columns of $\operatorname{RREF}(A)$.
NOTE: For polynomials, form each column of matrix A using the coefficients of each polynomial.

EX 4.4.1: Let $\mathbf{u}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $S=\left\{\left[\begin{array}{r}1 \\ 3 \\ -3\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 3 \\ 2\end{array}\right]\right\} \equiv\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\} \subseteq \mathbb{R}^{3}$.
(a) Write \mathbf{u} as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, if possible.
(b) Is $\mathbf{u} \in \operatorname{span}(S)$?

EX 4.4.2: Let $\mathbf{u}=\left[\begin{array}{r}4 \\ 1 \\ 14\end{array}\right]$ and $S=\left\{\left[\begin{array}{r}3 \\ 1 \\ 11\end{array}\right],\left[\begin{array}{r}2 \\ -2 \\ 2\end{array}\right],\left[\begin{array}{r}-1 \\ 2 \\ 1\end{array}\right]\right\} \equiv\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\} \subseteq \mathbb{R}^{3}$.
(a) Write \mathbf{u} as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, if possible. \quad (b) Is $\mathbf{u} \in \operatorname{span}(S)$?

EX 4.4.3: Let $\mathbf{u}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $S=\left\{\left[\begin{array}{r}1 \\ 3 \\ -3\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{r}-3 \\ -9 \\ 9\end{array}\right]\right\} \equiv\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\} \subseteq \mathbb{R}^{3}$.
(a) Write \mathbf{u} as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, if possible.
(b) Is $\mathbf{u} \in \operatorname{span}(S)$?

EX 4.4.4: Let $r(t)=3 t+2$ and $S=\left\{2 t^{2}-3 t+6,4 t^{2}+t, t^{2}+5 t-1\right\} \equiv\left\{p_{1}(t), p_{2}(t), p_{3}(t)\right\} \subseteq P_{2}$.
(a) Write $r(t)$ as a linear combination of $p_{1}(t), p_{2}(t), p_{3}(t)$, if possible.
(b) Is $r(t) \in \operatorname{span}(S)$?

EX 4.4.5: Let $r(t)=-8 t^{2}-16 t+24$ and $S=\left\{t^{2}+2 t-3,-4 t^{2}-8 t+12,2 t^{2}+4 t-6\right\} \equiv\left\{p_{1}(t), p_{2}(t), p_{3}(t)\right\} \subseteq P_{2}$.
(a) Write $r(t)$ as a linear combination of $p_{1}(t), p_{2}(t), p_{3}(t)$, if possible.
(b) Is $r(t) \in \operatorname{span}(S)$?

EX 4.4.6: Let $r(t)=3 t^{2}+t+5$ and $S=\left\{t^{2}+2 t-3, \quad-4 t^{2}-8 t+12,2 t^{2}+4 t-6\right\} \equiv\left\{p_{1}(t), p_{2}(t), p_{3}(t)\right\} \subseteq P_{2}$.
(a) Write $r(t)$ as a linear combination of $p_{1}(t), p_{2}(t), p_{3}(t)$, if possible.
(b) Is $r(t) \in \operatorname{span}(S)$?

EX 4.4.7: Let $S=\left\{\left[\begin{array}{r}1 \\ 3 \\ -3\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 3 \\ 2\end{array}\right]\right\} \equiv\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\} \subseteq \mathbb{R}^{3}$.
(a) Does S span \mathbb{R}^{3} ?
(b) Is S linearly independent or dependent?

EX 4.4.8: Let $S=\left\{\left[\begin{array}{r}3 \\ 1 \\ 11\end{array}\right],\left[\begin{array}{r}2 \\ -2 \\ 2\end{array}\right],\left[\begin{array}{r}-1 \\ 2 \\ 1\end{array}\right]\right\} \equiv\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\} \subseteq \mathbb{R}^{3}$.
(a) Does S span \mathbb{R}^{3} ?
(b) Is S linearly independent or dependent?

EX 4.4.9: Let $S=\left\{\left[\begin{array}{c}r+3 t \\ 2 s-4 t\end{array}\right]: r, s, t \in \mathbb{R}\right\}$. Find vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ such that $S=\operatorname{span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.
(C)2015 Josh Engwer - Revised September 30, 2015

EX 4.4.10: Let $S=\left\{2 t^{2}-3 t+6,4 t^{2}+t, t^{2}+5 t-1\right\} \equiv\left\{p_{1}(t), p_{2}(t), p_{3}(t)\right\} \subseteq P_{2}$.
(a) Does S span P_{2} ?
(b) Is S linearly independent or dependent?

EX 4.4.11: Let $S=\left\{t^{2}+2 t-3,-4 t^{2}-8 t+12, \quad 2 t^{2}+4 t-6\right\} \equiv\left\{p_{1}(t), p_{2}(t), p_{3}(t)\right\} \subseteq P_{2}$.
(a) Does S span P_{2} ?
(b) Is S linearly independent or dependent?

