$\underline{\underline{\text { EX 4.5.1: }}}$ Let $\mathcal{S}=\left\{\left[\begin{array}{r}1 \\ 3 \\ -3\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 3 \\ 2\end{array}\right]\right\} \equiv\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\} \subseteq \mathbb{R}^{3}$.
Is \mathcal{S} a basis for \mathbb{R}^{3} ? (Justify answer) If not, find a basis \mathcal{B} for the subspace spanned by $\mathcal{S} \&$ find $\operatorname{dim}(\operatorname{span}\{\mathcal{S}\})$.

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
\boxed{1} & 3 & 3 \\
3 & 2 & 3 \\
-3 & 3 & 2
\end{array}\right] \xrightarrow[3 R_{1}+R_{3} \rightarrow R_{3}]{(-3) R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{rrr}
\boxed{1} & 3 & 3 \\
0 & -7 & -6 \\
0 & 12 & 11
\end{array}\right] \xrightarrow[7 R_{3} \rightarrow R_{3}]{12 R_{2} \rightarrow R_{2}}\left[\begin{array}{rrr}
\hline 1 & 3 & 3 \\
0 & -84 & -72 \\
0 & 84 & 77
\end{array}\right] \xrightarrow{R_{2}+R_{3} \rightarrow R_{3}}\left[\begin{array}{rr}
{\left[\begin{array}{rrr}
1 & 3 & 3 \\
0 & -84 & -72 \\
0 & 0 & 5
\end{array}\right]}
\end{array}\right.
\end{aligned}
$$

Since every row of $\operatorname{RREF}(A)$ has a pivot, \mathcal{S} spans \mathbb{R}^{3}.
Since every column of $\operatorname{RREF}(A)$ has a pivot, \mathcal{S} is linearly independent.

$$
\therefore \mathcal{S} \text { is a basis for } \mathbb{R}^{3}
$$

EX 4.5.2: Let $\mathcal{S}=\left\{\left[\begin{array}{r}3 \\ 1 \\ 11\end{array}\right],\left[\begin{array}{r}2 \\ -2 \\ 2\end{array}\right],\left[\begin{array}{r}-1 \\ 2 \\ 1\end{array}\right]\right\} \equiv\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\} \subseteq \mathbb{R}^{3}$.
Is \mathcal{S} a basis for \mathbb{R}^{3} ? (Justify answer) If not, find a basis \mathcal{B} for the subspace spanned by $\mathcal{S} \&$ find $\operatorname{dim}(\operatorname{span}\{\mathcal{S}\})$.

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} \\
\mid & \mid & \mid
\end{array}\right]=\left[\begin{array}{rrr}
3 & 2 & -1 \\
1 & -2 & 2 \\
11 & 2 & 1
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{|ccc}
1 & -2 & 2 \\
3 & 2 & -1 \\
11 & 2 & 1
\end{array}\right] \xrightarrow[(-11) R_{1}+R_{3} \rightarrow R_{3}]{(-3) R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{rrr}
1 & -2 & 2 \\
0 & 8 & -7 \\
0 & 24 & -21
\end{array}\right] \\
& \xrightarrow{(-3) R_{2}+R_{3} \rightarrow R_{3}}\left[\begin{array}{rrr}
1 & -2 & 2 \\
0 & 8 & -7 \\
0 & 0 & 0
\end{array}\right] \xrightarrow{\left(\frac{1}{8}\right) R_{2} \rightarrow R_{2}}\left[\begin{array}{rrr}
\boxed{1} & -2 & 2 \\
0 & \boxed{1} & -7 / 8 \\
0 & 0 & 0
\end{array}\right] \xrightarrow{2 R_{2}+R_{1} \rightarrow R_{1}}\left[\begin{array}{rrrr}
\hline 1 & 0 & 1 / 4 \\
0 & \boxed{1} & -7 / 8 \\
0 & 0 & 0
\end{array}\right]=\operatorname{RREF}(A)
\end{aligned}
$$

Since at least one row of $\operatorname{RREF}(A)$ has no pivot, \mathcal{S} does not span \mathbb{R}^{3}.
Since at least one column of $\operatorname{RREF}(A)$ has no pivot, \mathcal{S} is not linearly independent. $\quad \therefore \mathcal{S}$ is not a basis for \mathbb{R}^{3}
\therefore Basis $\mathcal{B}=\{$ pivot columns of $A\}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=\left\{\left[\begin{array}{c}3 \\ 1 \\ 11\end{array}\right],\left[\begin{array}{r}2 \\ -2 \\ 2\end{array}\right]\right\} \Longrightarrow \operatorname{dim}(\operatorname{span}\{\mathcal{S}\})=2$
EX 4.5.3: Let $\mathcal{S}=\left\{\left[\begin{array}{r}1 \\ 3 \\ -2\end{array}\right],\left[\begin{array}{r}3 \\ 9 \\ -6\end{array}\right],\left[\begin{array}{r}-2 \\ -6 \\ 4\end{array}\right]\right\} \equiv\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\} \subseteq \mathbb{R}^{3}$.
Is \mathcal{S} a basis for \mathbb{R}^{3} ? (Justify answer) If not, find a basis \mathcal{B} for the subspace spanned by $\mathcal{S} \&$ find $\operatorname{dim}(\operatorname{span}\{\mathcal{S}\})$.

$$
A=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} \\
\mid & \mid & \mid
\end{array}\right]=\left[\begin{array}{ccc}
\boxed{1} & 3 & -2 \\
3 & 9 & -6 \\
-2 & -6 & 4
\end{array}\right] \xrightarrow[2 R_{1}+R_{3} \rightarrow R_{3}]{(-3) R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{|ccc}
\boxed{1} & 3 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\operatorname{RREF}(A)
$$

Since at least one row of $\operatorname{RREF}(A)$ has no pivot, \mathcal{S} does not span \mathbb{R}^{3}.
Since at least one column of $\operatorname{RREF}(A)$ has no pivot, \mathcal{S} is not linearly independent.
$\therefore \mathcal{S}$ is not a basis for \mathbb{R}^{3}
\therefore Basis $\mathcal{B}=\{$ pivot columns of $A\}=\left\{\mathbf{v}_{1}\right\}=\left\{\left[\begin{array}{r}1 \\ 3 \\ -2\end{array}\right]\right\} \Longrightarrow \operatorname{dim}(\operatorname{span}\{\mathcal{S}\})=1$

EX 4.5.4: Let $\mathcal{S}=\left\{2 t^{2}-3 t+6,4 t^{2}+t, t^{2}+5 t-1\right\} \equiv\left\{p_{1}(t), p_{2}(t), p_{3}(t)\right\} \subseteq P_{2}$.
Is \mathcal{S} a basis for P_{2} ? (Justify answer) If not, find a basis \mathcal{B} for the subspace spanned by $\mathcal{S} \&$ find $\operatorname{dim}(\operatorname{span}\{\mathcal{S}\})$.

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
p_{1}(t) & p_{2}(t) & p_{3}(t) \\
\mid & \mid & \mid
\end{array}\right]=\left[\begin{array}{rrr}
2 & 4 & 1 \\
-3 & 1 & 5 \\
6 & 0 & -1
\end{array}\right] \xrightarrow[2 R_{2} \rightarrow R_{2}]{3 R_{1} \rightarrow R_{1}}\left[\begin{array}{rrr}
6 & 12 & 3 \\
-6 & 2 & 10 \\
6 & 0 & -1
\end{array}\right] \xrightarrow[(-1) R_{1}+R_{3} \rightarrow R_{3}]{R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{rrr}
6 & 12 & 3 \\
0 & 14 & 13 \\
0 & -12 & -4
\end{array}\right] \\
& \xrightarrow[\left(-\frac{1}{4}\right) R_{3} \rightarrow R_{3}]{\left(\frac{1}{3}\right) R_{1} \rightarrow R_{1}}\left[\begin{array}{rrr}
2 & 4 & 1 \\
0 & 14 & 13 \\
0 & 3 & 1
\end{array}\right] \xrightarrow[14 R_{3} \rightarrow R_{3}]{3 R_{2} \rightarrow R_{2}}\left[\begin{array}{rrr}
2 & 4 & 1 \\
0 & 42 & 39 \\
0 & 42 & 14
\end{array}\right] \xrightarrow{(-1) R_{2}+R_{3} \rightarrow R_{3}}\left[\begin{array}{rrr}
2 & 4 & 1 \\
0 & 42 & 39 \\
0 & 0 & -25
\end{array}\right] \xrightarrow[\left(-\frac{1}{25}\right) R_{3} \rightarrow R_{3}]{\left(\frac{1}{3}\right) R_{2} \rightarrow R_{2}}\left[\begin{array}{rcc}
2 & 4 & 1 \\
0 & 14 & 13 \\
0 & 0 & 1
\end{array}\right] \\
& \xrightarrow[(-1) R_{3}+R_{1} \rightarrow R_{1}]{(-13) R_{3}+R_{2} \rightarrow R_{2}}\left[\begin{array}{rrr}
2 & 4 & 0 \\
0 & 14 & 0 \\
0 & 0 & \boxed{1}
\end{array}\right] \xrightarrow[\left(\frac{1}{14}\right) R_{2} \rightarrow R_{2}]{\left(\frac{1}{2}\right) R_{1} \rightarrow R_{1}}\left[\begin{array}{ccc}
\boxed{1} & 2 & 0 \\
0 & \boxed{1} & 0 \\
0 & 0 & \boxed{1}
\end{array}\right] \xrightarrow{(-2) R_{2}+R_{1} \rightarrow R_{1}}\left[\begin{array}{cccc}
\hline 1 & 0 & 0 \\
0 & \boxed{1} & 0 \\
0 & 0 & 1
\end{array}\right]=\operatorname{RREF}(A) \\
& \text { Since every row of } \operatorname{RREF}(A) \text { has a pivot, } \mathcal{S} \text { spans } P_{2} \text {. } \\
& \text { Since every column of } \operatorname{RREF}(A) \text { has a pivot, } \mathcal{S} \text { is linearly independent. } \\
& \therefore \mathcal{S} \text { is a basis for } P_{2}
\end{aligned}
$$

EX 4.5.5: Let $\mathcal{S}=\left\{t^{2}+2 t-3,-4 t^{2}-8 t+12,2 t^{2}+4 t-6\right\} \equiv\left\{p_{1}(t), p_{2}(t), p_{3}(t)\right\} \subseteq P_{2}$.
Is \mathcal{S} a basis for P_{2} ? (Justify answer) If not, find a basis \mathcal{B} for the subspace spanned by $\mathcal{S} \&$ find $\operatorname{dim}(\operatorname{span}\{\mathcal{S}\})$.

$$
A=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
p_{1}(t) & p_{2}(t) & p_{3}(t) \\
\mid & \mid & \mid
\end{array}\right]=\left[\begin{array}{ccc}
\boxed{1} & -4 & 2 \\
2 & -8 & 4 \\
-3 & 12 & -6
\end{array}\right] \xrightarrow[3 R_{1}+R_{3} \rightarrow R_{3}]{(-2) R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{crc}
\boxed{1} & -4 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\operatorname{RREF}(A)
$$

Since at least one row of $\operatorname{RREF}(A)$ has no pivot, \mathcal{S} does not span P_{2}.
Since at least one column of $\operatorname{RREF}(A)$ has no pivot, \mathcal{S} is not linearly independent. $\quad \therefore \mathcal{S}$ is not a basis for P_{2}
\therefore Basis $\mathcal{B}=\{$ pivot columns of $A\}=\left\{p_{1}(t)\right\}=\left\{t^{2}+2 t-3\right\} \Longrightarrow \operatorname{dim}(\operatorname{span}\{\mathcal{S}\})=1$
NOTE: $\quad p_{2}(t)$ is not part of the basis \mathcal{B} since it's a linear combination of $p_{1}(t): \quad p_{2}(t)=(-4) p_{1}(t)$
NOTE: $\quad p_{3}(t)$ is not part of the basis \mathcal{B} since it's a linear combination of $p_{1}(t): \quad p_{3}(t)=2 p_{1}(t)$

EX 4.5.6: Let $W=\left\{\left[\begin{array}{c}r+3 t \\ 2 s-4 t\end{array}\right]: r, s, t \in \mathbb{R}\right\}$ be a subspace of \mathbb{R}^{2}. Find a basis \mathcal{B} for $W \&$ find $\operatorname{dim}(W)$.
$\left[\begin{array}{c}r+3 t \\ 2 s-4 t\end{array}\right]=\left[\begin{array}{l}r \\ 0\end{array}\right]+\left[\begin{array}{c}0 \\ 2 s\end{array}\right]+\left[\begin{array}{c}3 t \\ -4 t\end{array}\right] \quad$ (Undo Vector Addition)

$$
=r\left[\begin{array}{l}
1 \\
0
\end{array}\right]+s\left[\begin{array}{l}
0 \\
2
\end{array}\right]+t\left[\begin{array}{r}
3 \\
-4
\end{array}\right] \quad \text { (Undo Scalar Multiplication) }
$$

$\therefore W=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 2\end{array}\right],\left[\begin{array}{r}3 \\ -4\end{array}\right]\right\} \equiv \operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$
$A=\left[\begin{array}{ccc}\mid & \mid & \mid \\ \mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} \\ \mid & \mid & \mid\end{array}\right]=\left[\begin{array}{ccc}\boxed{1} & 0 & 3 \\ 0 & 2 & -4\end{array}\right] \xrightarrow{\left(\frac{1}{2}\right) R_{2} \rightarrow R_{2}}\left[\begin{array}{ccc}\boxed{1} & 0 & 3 \\ 0 & \boxed{1} & -2\end{array}\right]=\operatorname{RREF}(A)$
\therefore Basis $\mathcal{B}=\{$ pivot columns of $A\}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 2\end{array}\right]\right\} \Longrightarrow \operatorname{dim}(W)=2$
NOTE: $\quad \mathbf{v}_{3}$ is not part of the basis \mathcal{B} since it's a linear combination of $\mathbf{v}_{1} \& \mathbf{v}_{2}: \quad \mathbf{v}_{3}=3 \mathbf{v}_{1}+(-2) \mathbf{v}_{2}$

