VECTOR SPACES: BASIS, DIMENSION [LARSON 4.5]

• BASIS FOR A VECTOR SPACE (DEFINITION):

Let V be a vector space and $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k} \subseteq V$

Then S is a **basis** for V if: S spans V **AND** S is linearly independent Moreover, each vector in a basis is called a **basis vector**.

• DIMENSION OF A VECTOR SPACE (DEFINITION):

Let $\mathcal{B} = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k}$ be a basis for vector space V. Then the **dimension** of V is the # of basis vectors in \mathcal{B} : $\dim(V) = k$ Let vector space Z contain only the **zero vector**. Then $\dim(Z) := 0$

• FINITE & INFINITE DIMENSIONAL VECTOR SPACES:

Let \mathcal{B} be a basis for vector space V. Then:

V is finite dimensional if basis \mathcal{B} contains a finite # of basis vectors.

V is **infinite dimensional** if basis \mathcal{B} contains an **infinite** # of basis vectors.

Vector spaces \mathbb{R} , \mathbb{R}^n , $\mathbb{R}^{m \times n}$, P_n are each finite dimensional.

Vector spaces C[a, b], $C^{1}[a, b]$, $C^{2}[a, b]$, $C^{k}[a, b]$, P are each infinite dimensional.

Infinite dimensional vector spaces are beyond the scope of this chapter.

• **<u>STANDARD BASES</u>**: Many vector spaces have a "intuitive" basis, called the **standard basis**.

<u>NOTATION</u>: A standard basis is denoted by $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_k\}$, where \mathbf{e}_j is the j^{th} standard basis vector. With a standard basis, the coefficients in the linear combination are simply the entries of the vector:

$$\star \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{\bullet} + x_2 \underbrace{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}_{\bullet} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$$

 $\star \ a_0 + a_1t + a_2t^2 + a_3t^3 = a_0\underbrace{(1)}_{\mathbf{e}_1} + a_1\underbrace{(t)}_{\mathbf{e}_2} + a_2\underbrace{(t^2)}_{\mathbf{e}_3} + a_3\underbrace{(t^3)}_{\mathbf{e}_4} = a_0\mathbf{e}_1 + a_1\mathbf{e}_2 + a_2\mathbf{e}_3 + a_3\mathbf{e}_4$

• FINDING A BASIS FOR A SUBSPACE SPANNED BY A SET:

<u>TASK:</u> Find a basis \mathcal{B} for the subspace spanned by $\mathcal{S} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}.$

- (1) Form matrix A with $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$ as its columns: $A = \begin{bmatrix} | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_k \\ | & | & | & | \end{bmatrix}$
- (2) Perform Gauss-Jordan Elimination on matrix A: $A \xrightarrow{Gauss-Jordan} \operatorname{RREF}(A)$
- (3) Basis $\mathcal{B} = \{ \text{pivot columns of } A \}.$

NOTE: For polynomials, form each column of matrix A using the <u>coefficients</u> of each polynomial.

• FINDING A BASIS FOR A SUBSPACE WRITTEN IN TERMS OF PARAMETERS:

<u>TASK:</u> Find a basis \mathcal{B} for the subspace $W = \{\mathbf{w}_1 : s, t, \dots \in \mathbb{R}\}$ of vector space V.

- (1) "Undo" any vector addition by writing \mathbf{w}_1 as a sum of vectors, each of which has its own parameter.
- (2) "Undo" any scalar multiplication by factoring out each parameter from each vector.
- (3) The resulting set of vectors span W.
- (4) Apply the previous procedure to this set of vectors to remove any linearly dependent vectors.

^{©2015} Josh Engwer - Revised September 30, 2015

EX 4.5.1: Let
$$S = \left\{ \begin{bmatrix} 1\\ 3\\ -3 \end{bmatrix}, \begin{bmatrix} 3\\ 2\\ 3 \end{bmatrix}, \begin{bmatrix} 3\\ 3\\ 2\\ 2 \end{bmatrix} \right\} \equiv \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} \subseteq \mathbb{R}^3.$$

Is S a basis for \mathbb{R}^3 ? (Justify answer) If not, find a basis \mathcal{B} for the subspace spanned by S & find dim(span{S}).

$$\boxed{\underline{\mathbf{EX} \ 4.5.2:}} \text{ Let } \mathcal{S} = \left\{ \begin{bmatrix} 3\\1\\11 \end{bmatrix}, \begin{bmatrix} 2\\-2\\2 \end{bmatrix}, \begin{bmatrix} -1\\2\\1 \end{bmatrix} \right\} \equiv \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} \subseteq \mathbb{R}^3.$$

Is S a basis for \mathbb{R}^3 ? (Justify answer) If not, find a basis \mathcal{B} for the subspace spanned by S & find dim(span{S}).

$$\underbrace{\mathbf{\underline{EX 4.5.3:}}}_{\text{Let}} \text{ Let } \mathcal{S} = \left\{ \begin{bmatrix} 1\\ 3\\ -2 \end{bmatrix}, \begin{bmatrix} 3\\ 9\\ -6 \end{bmatrix}, \begin{bmatrix} -2\\ -6\\ 4 \end{bmatrix} \right\} \equiv \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} \subseteq \mathbb{R}^3.$$

Is S a basis for \mathbb{R}^3 ? (Justify answer) If not, find a basis \mathcal{B} for the subspace spanned by S & find dim(span{S}).

<u>EX 4.5.4</u>: Let $S = \{2t^2 - 3t + 6, 4t^2 + t, t^2 + 5t - 1\} \equiv \{p_1(t), p_2(t), p_3(t)\} \subseteq P_2.$

Is S a basis for P_2 ? (Justify answer) If not, find a basis \mathcal{B} for the subspace spanned by S & find dim(span{S}).

EX 4.5.5: Let $S = \{t^2 + 2t - 3, -4t^2 - 8t + 12, 2t^2 + 4t - 6\} \equiv \{p_1(t), p_2(t), p_3(t)\} \subseteq P_2.$

Is S a basis for P_2 ? (Justify answer) If not, find a basis \mathcal{B} for the subspace spanned by S & find dim(span{S}).

EX 4.5.6: Let
$$W = \left\{ \begin{bmatrix} r+3t\\ 2s-4t \end{bmatrix} : r, s, t \in \mathbb{R} \right\}$$
 be a subspace of \mathbb{R}^2 . Find a basis \mathcal{B} for W & find dim (W) .

C2015 Josh Engwer – Revised September 30, 2015