ROW SPACE, COLUMN SPACE, NULL SPACE, RANK [LARSON 4.6]

- ROW SPACE OF A MATRIX: The row space of $m \times n$ matrix A is the subspace spanned by its rows:

$$
\operatorname{RowSp}(A):=\operatorname{span}\{\text { rows of } A\} \subseteq \mathbb{R}^{n}
$$

- COLUMN SPACE OF A MATRIX: The column space of $m \times n$ matrix A is the subspace spanned by its columns:

$$
\operatorname{ColSp}(A):=\operatorname{span}\{\text { columns of } A\} \subseteq \mathbb{R}^{m}
$$

- FINDING BASES FOR THE ROW SPACE \& COLUMN SPACE:

TASK: Find bases for $\operatorname{RowSp}(A) \& \operatorname{ColSp}(A)$ where matrix $A \in \mathbb{R}^{m \times n}$.
(1) Perform Gauss-Jordan Elimination on matrix A.
(\star) The pivot rows of $\operatorname{RREF}(A)$ form a basis for $\operatorname{RowSp}(A)$.
(\star) The pivot columns of A form a basis for $\operatorname{ColSp}(A)$.

- RANK OF A MATRIX: Let $A \in \mathbb{R}^{m \times n}$.

Then the rank of A is the dimension of the column (row) space of A :

$$
\operatorname{rank}(A):=\operatorname{dim} \operatorname{ColSp}(A)=\operatorname{dim} \operatorname{RowSp}(A)
$$

In other words, the rank of A is simply the \# of pivots in $\operatorname{RREF}(A)$.
Matrix A has full row rank $\Longleftrightarrow \operatorname{rank}(A)=m$
Matrix A has full column rank $\Longleftrightarrow \operatorname{rank}(A)=n$

- COLUMN SPACE \& CONSISTENCY OF CORRESPONDING LINEAR SYSTEM:

Let $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{n}$.
Then $m \times n$ linear system $A \mathbf{x}=\mathbf{b}$ is consistent $\Longleftrightarrow \mathbf{b} \in \operatorname{ColSp}(A)$

- NULL SPACE OF A MATRIX: The null space of $m \times n$ matrix A is the set of all solutions to $A \mathbf{x}=\overrightarrow{\mathbf{0}}$:

$$
\operatorname{NulSp}(A):=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x}=\overrightarrow{\mathbf{0}}\right\}
$$

Moreover, $\operatorname{NulSp}(A)$ is a subspace of \mathbb{R}^{n}.
The nullity of A is the dimension of its null space: $\operatorname{nullity}(A):=\operatorname{dim} \operatorname{NulSp}(A)$

- FINDING A BASIS FOR THE NULL SPACE:

TASK: Find the nullspace \& nullity of matrix $A \in \mathbb{R}^{m \times n}$.
(1) Perform Gauss-Jordan Elimination on augemented matrix $[A \mid \overrightarrow{\mathbf{0}}]$
(2) Assign unique parameters to the free variables.
(3) Form resulting solution \mathbf{x} to $A \mathbf{x}=\overrightarrow{\mathbf{0}}$ by interpreting rows of $[\operatorname{RREF}(A) \mid \overrightarrow{\mathbf{0}}]$
(4) "Undo" vector addition by placing each parameter into its own vector.
(5) "Undo" scalar multiplication by factoring the parameter from each vector.
(\star) The resulting vectors form a basis for the nullspace of A.
$(\star) \operatorname{nullity}(A)=\#$ basis vectors for the nullspace of A.
(\star) If the only solution to $A \mathbf{x}=\overrightarrow{\mathbf{0}}$ is $\overrightarrow{\mathbf{0}}$, then $\operatorname{NulSp}(A)=\{\overrightarrow{\mathbf{0}}\} \& \operatorname{nullity}(A)=0$.

- NULLSPACE \& SOLVING $A \mathbf{x}=\mathbf{b}$: Let $A \in \mathbb{R}^{m \times n}$ where $m \leq n$ (i.e. A is square or "short \& wide" rectangular)

Let non-homogeneous linear system $A \mathbf{x}=\mathbf{b}$ have infinitely many solutions.
Then, the solution to $A \mathbf{x}=\mathbf{b}$ is $\mathbf{x}=\mathbf{x}_{p}+\mathbf{x}_{h} \quad$ where
\mathbf{x}_{p} is the particular solution to $A \mathbf{x}=\mathbf{b}$
\mathbf{x}_{h} is the homogeneous solution to $A \mathbf{x}=\overrightarrow{\mathbf{0}}$

EX 4.6.1: Let $A=\left[\begin{array}{rrr}1 & 3 & 3 \\ 3 & 2 & 3 \\ -3 & 3 & 2\end{array}\right]$.
(a) Find bases \& the dimensions for $\operatorname{RowSp}(A)$ and $\operatorname{ColSp}(A)$.
(b) Find $\operatorname{RowSp}(A)$ and $\operatorname{ColSp}(A)$.
(c) Find $\operatorname{rank}(A)$. Does A have full row rank? Full column rank?
EX 4.6.2: Let $A=\left[\begin{array}{rrr}3 & 2 & -1 \\ 1 & -2 & 2 \\ 11 & 2 & 1\end{array}\right]$.
(a) Find bases \& the dimensions for $\operatorname{RowSp}(A)$ and $\operatorname{ColSp}(A)$.
(b) Find $\operatorname{RowSp}(A)$ and $\operatorname{ColSp}(A)$.
(c) Find $\operatorname{rank}(A)$. Does A have full row rank? Full column rank?

EX 4.6.6: Let $A=\left[\begin{array}{rrr}1 & 3 & -2 \\ 3 & 9 & -6 \\ -2 & -6 & 4\end{array}\right]$.
(a) Find a basis for $\operatorname{NulSp}(A)$.
(b) Find $\operatorname{NulSp}(A)$.
(c) Find $\operatorname{rank}(A)$ and $\operatorname{nullity}(A)$.

EX 4.6.7: Find the homogeneous $\left(\mathbf{x}_{h}\right)$ \& particular $\left(\mathbf{x}_{p}\right)$ solutions to the linear system $\left\{\begin{array}{rlll}x_{1}+3 x_{2} & +3 x_{3} & =1 \\ 3 x_{1} & +2 x_{2} & +3 x_{3} & =2 \\ -3 x_{1} & +3 x_{2} & +2 x_{3} & =3\end{array}\right.$

EX 4.6.9: Find the homogeneous $\left(\mathbf{x}_{h}\right)$ \& particular $\left(\mathbf{x}_{p}\right)$ solutions to the linear system $\left\{\begin{array}{rlll}x_{1} & +3 x_{2} & -2 x_{3} & =2 \\ 3 x_{1} & +9 x_{2} & -6 x_{3} & =6 \\ -2 x_{1} & -6 x_{2} & +4 x_{3} & =-4\end{array}\right.$

