ROW SPACE, COLUMN SPACE, NULL SPACE, RANK [LARSON 4.6]

• **<u>ROW SPACE OF A MATRIX</u>**: The row space of $m \times n$ matrix A is the subspace spanned by its rows:

 $\operatorname{RowSp}(A) := \operatorname{span}\{\operatorname{rows of} A\} \subseteq \mathbb{R}^n$

• **COLUMN SPACE OF A MATRIX:** The column space of $m \times n$ matrix A is the subspace spanned by its columns:

 $\operatorname{ColSp}(A) := \operatorname{span}\{\operatorname{columns} \text{ of } A\} \subseteq \mathbb{R}^m$

• FINDING BASES FOR THE ROW SPACE & COLUMN SPACE:

<u>TASK:</u> Find bases for RowSp(A) & ColSp(A) where matrix $A \in \mathbb{R}^{m \times n}$.

(1) Perform Gauss-Jordan Elimination on matrix A.

- (*) The **pivot rows** of $\mathbf{RREF}(A)$ form a basis for $\mathrm{RowSp}(A)$.
- (*) The **pivot columns** of A form a basis for ColSp(A).
- **<u>RANK OF A MATRIX</u>**: Let $A \in \mathbb{R}^{m \times n}$.

Then the **rank** of A is the dimension of the column (row) space of A:

 $\operatorname{rank}(A) := \dim \operatorname{ColSp}(A) = \dim \operatorname{RowSp}(A)$

In other words, the **rank** of A is simply the # of **pivots** in **RREF**(A).

Matrix A has **full row rank** \iff rank(A) = m

Matrix A has full column rank \iff rank(A) = n

• <u>COLUMN SPACE & CONSISTENCY OF CORRESPONDING LINEAR SYSTEM:</u>

Let $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^n$.

Then $m \times n$ linear system $A\mathbf{x} = \mathbf{b}$ is consistent $\iff \mathbf{b} \in \text{ColSp}(A)$

• **<u>NULL SPACE OF A MATRIX</u>**: The **null space** of $m \times n$ matrix A is the set of all solutions to $A\mathbf{x} = \vec{\mathbf{0}}$:

 $NulSp(A) := \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \vec{\mathbf{0}} \}$

Moreover, $\operatorname{NulSp}(A)$ is a subspace of \mathbb{R}^n .

The **nullity** of A is the dimension of its null space: $\operatorname{nullity}(A) := \operatorname{dim} \operatorname{NulSp}(A)$

• FINDING A BASIS FOR THE NULL SPACE:

<u>TASK:</u> Find the nullspace & nullity of matrix $A \in \mathbb{R}^{m \times n}$.

- (1) Perform Gauss-Jordan Elimination on augemented matrix $[A \mid \vec{0}]$
- (2) Assign unique parameters to the free variables.
- (3) Form resulting solution \mathbf{x} to $A\mathbf{x} = \vec{\mathbf{0}}$ by interpreting rows of $[\text{RREF}(A) \mid \vec{\mathbf{0}}]$
- (4) "Undo" vector addition by placing each parameter into its own vector.
- (5) "Undo" scalar multiplication by factoring the parameter from each vector.
- (*) The resulting vectors form a basis for the nullspace of A.
- (*) $\operatorname{nullity}(A) = \#$ basis vectors for the nullspace of A.
- (*) If the only solution to $A\mathbf{x} = \vec{\mathbf{0}}$ is $\vec{\mathbf{0}}$, then $\operatorname{NulSp}(A) = \{\vec{\mathbf{0}}\}\$ & $\operatorname{nullity}(A) = 0$.
- **<u>NULLSPACE & SOLVING Ax = b</u>**: Let $A \in \mathbb{R}^{m \times n}$ where $m \le n$ (i.e. A is square or "short & wide" rectangular)

Let non-homogeneous linear system $A\mathbf{x} = \mathbf{b}$ have infinitely many solutions.

Then, the solution to $A\mathbf{x} = \mathbf{b}$ is $\mathbf{x} = \mathbf{x}_p + \mathbf{x}_h$ where

 \mathbf{x}_p is the **particular solution** to $A\mathbf{x} = \mathbf{b}$

 \mathbf{x}_h is the homogeneous solution to $A\mathbf{x} = \vec{\mathbf{0}}$

 $[\]textcircled{C}2015$ Josh Engwer – Revised September 30, 2015

	[1	3	3]	(a)	Find bases & the dimensions for $\operatorname{RowSp}(A)$	and $\operatorname{ColSp}(A)$.
<u>EX 4.6.1</u> : Let $A =$	3	2	3		(b)	Find $\operatorname{RowSp}(A)$ and $\operatorname{ColSp}(A)$.	
	−3	3	2]	(c)	Find $rank(A)$. Does A have full row rank?	Full column rank?

	3	2	-1]	(a)	Find bases & the dimensions for $\operatorname{RowSp}(A)$ and $\operatorname{ColSp}(A)$.
<u>EX 4.6.2</u> : Let $A =$	1	-2	2.	(b)	Find $\operatorname{RowSp}(A)$ and $\operatorname{ColSp}(A)$.
	11	2	1	(c)	Find $rank(A)$. Does A have full row rank? Full column rank?

<u>EX 4.6.3</u> : Let <i>A</i> =	$\begin{bmatrix} 1\\ 3\\ -2 \end{bmatrix}$	$3 \\ 9 \\ -6$	-2 -6 4	. (a) b)	Is $\mathbf{b}_1 =$ Is $\mathbf{b}_2 =$	$(4, 12, -8)^T$ $(1, 2, 3)^T$	$\in \operatorname{ColSp}(A)$? $\in \operatorname{ColSp}(A)$?	Is linear system $A\mathbf{x} = \mathbf{b}_1$ consistent? Is linear system $A\mathbf{x} = \mathbf{b}_2$ consistent?
---	--	----------------	---------------	-----	----------	--	----------------------------------	--	--

		1	3	3		(a)	Find a basis for $NulSp(A)$.
EX 4.6.4:	Let $A =$	3	2	3		(b)	Find $\operatorname{NulSp}(A)$.
		-3	3	2		(c)	Find $rank(A)$ and $rullity(A)$.

	3	2	-1]		(a)	Find a basis for $NulSp(A)$.
<u>EX 4.6.5</u> : Let $A =$	1	-2	2	•	(b)	Find $NulSp(A)$.
	11	2	1		(c)	Find $\operatorname{rank}(A)$ and $\operatorname{nullity}(A)$.

	1	3	-2		(a)	Find a basis for $NulSp(A)$.
<u>EX 4.6.6</u> : Let $A =$	$\begin{vmatrix} 3\\ -2 \end{vmatrix}$	$9 \\ -6$	$-6 \\ 4$		(b) (c)	Find $\operatorname{NulSp}(A)$. Find $\operatorname{rank}(A)$ and $\operatorname{nullity}(A)$.
	L	-	-	1		

C2015 Josh Engwer – Revised September 30, 2015

		ſ	x_1	+	$3x_2$	$^+$	$3x_3$	=	1
EX 4.6.7:	Find the homogeneous (\mathbf{x}_h) & particular (\mathbf{x}_p) solutions to the linear system	ł	$3x_1$	+	$2x_2$	+	$3x_3$	=	2
		l	$-3x_{1}$	+	$3x_2$	+	$2x_3$	=	3

	ſ	$3x_1$	+	$2x_2$	_	x_3	=	4
<u>EX 4.6.8</u> : Find the homogeneous (\mathbf{x}_h) & particular (\mathbf{x}_p) solutions to the linear system	ł	x_1	_	$2x_2$	+	$2x_3$	=	1
	l	$11x_{1}$	+	$2x_2$	+	x_3	=	14

(x_1	+	$3x_2$	_	$2x_3$	=	2
<u>EX 4.6.9</u> Find the homogeneous (\mathbf{x}_h) & particular (\mathbf{x}_p) solutions to the linear system $\left\{ \right.$	$3x_1$	+	$9x_2$	_	$6x_3$	=	6
	$-2x_{1}$	_	$6x_2$	+	$4x_3$	=	-4