EX 4.7.1: Let basis $\mathcal{B}=\left\{\left[\begin{array}{r}1 \\ 2 \\ -3\end{array}\right],\left[\begin{array}{r}-4 \\ -9 \\ 12\end{array}\right],\left[\begin{array}{r}-2 \\ 1 \\ 7\end{array}\right]\right\} \equiv\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\} . \quad$ Find $[\mathbf{x}]_{\mathcal{E}}$ if $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{r}4 \\ 1 \\ -2\end{array}\right]$.
$[\mathbf{x}]_{\mathcal{B}}=(4) \mathbf{v}_{1}+(1) \mathbf{v}_{2}+(-2) \mathbf{v}_{3}=(4)\left[\begin{array}{r}1 \\ 2 \\ -3\end{array}\right]+(1)\left[\begin{array}{r}-4 \\ -9 \\ 12\end{array}\right]+(-2)\left[\begin{array}{r}-2 \\ 1 \\ 7\end{array}\right]=\left[\begin{array}{r}4 \\ -3 \\ -14\end{array}\right] \quad \therefore \quad[\mathbf{x}]_{\mathcal{E}}=\left[\begin{array}{r}4 \\ -3 \\ -14\end{array}\right]$
NOTE: Here, $[\mathbf{x}]_{\mathcal{E}}$ can be written as $4 \widehat{\mathbf{i}}-3 \widehat{\mathbf{j}}-14 \widehat{\mathbf{k}}$ as seen in Calculus III and Physics, but writing vectors in terms of $\widehat{\mathbf{i}}, \widehat{\mathbf{j}}, \widehat{\mathbf{k}}$ is not useful for this course, and hence is strongly discouraged.

EX 4.7.2: Let basis $\mathcal{B}=\left\{\left[\begin{array}{r}1 \\ 2 \\ -3\end{array}\right],\left[\begin{array}{r}-4 \\ -9 \\ 12\end{array}\right],\left[\begin{array}{r}-2 \\ 1 \\ 7\end{array}\right]\right\} \equiv\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\} . \quad$ Find $[\mathbf{x}]_{\mathcal{B}}$ if $[\mathbf{x}]_{\mathcal{E}}=\left[\begin{array}{r}1 \\ -8 \\ -5\end{array}\right]$.
$\left[\mathcal{B} \mid[\mathbf{x}]_{\mathcal{E}}\right]=\left[\begin{array}{rrr|r}\boxed{1} & -4 & -2 & 1 \\ 2 & -9 & 1 & -8 \\ -3 & 12 & 7 & -5\end{array}\right] \xrightarrow[3 R_{1}+R_{3} \rightarrow R_{3}]{(-2) R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{rrr|r}\boxed{1} & -4 & -2 & 1 \\ 0 & -1 & 5 & -10 \\ 0 & 0 & \boxed{1} & -2\end{array}\right] \xrightarrow{(-1) R_{2} \rightarrow R_{2}}\left[\begin{array}{rrrr|r}\hline 1 & -4 & -2 & 1 \\ 0 & 1 & -5 & 10 \\ 0 & 0 & 1 & -2\end{array}\right]$
$\xrightarrow[2 R_{3}+R_{1} \rightarrow R_{1}]{5 R_{3}+R_{2} \rightarrow R_{2}}\left[\begin{array}{ccc|r}\hline 1 & -4 & 0 & -3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \boxed{1} & -2\end{array}\right] \xrightarrow{4 R_{2}+R_{1} \rightarrow R_{1}}\left[\begin{array}{ccc|c}\boxed{1} & 0 & 0 & -3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \boxed{1} & -2\end{array}\right]=\left[I \mid[\mathbf{x}]_{\mathcal{B}}\right]$
$\therefore[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{r}-3 \\ 0 \\ -2\end{array}\right] \quad$ OR $\quad\left[\begin{array}{r}{[\mathbf{x}]_{\mathcal{B}}=(-3,0,-2)^{T}} \\ \hline\end{array}\right.$
BE CAREFUL: $\quad[\mathbf{x}]_{\mathcal{B}}$ cannot be written as $-3 \widehat{\mathbf{i}}-2 \widehat{\mathbf{k}}$ since basis \mathcal{B} is non-standard!
$\underline{\text { EX 4.7.3: }}$ Let bases $\mathcal{B}=\left\{\left[\begin{array}{r}5 \\ -4 \\ 2\end{array}\right],\left[\begin{array}{r}1 \\ -1 \\ 3\end{array}\right],\left[\begin{array}{r}-6 \\ 1 \\ 14\end{array}\right]\right\}$ and $\mathcal{B}^{\prime}=\left\{\left[\begin{array}{r}1 \\ 2 \\ -3\end{array}\right],\left[\begin{array}{r}-4 \\ -9 \\ 12\end{array}\right],\left[\begin{array}{r}-2 \\ 1 \\ 7\end{array}\right]\right\}$.
Find $[\mathbf{x}]_{\mathcal{B}^{\prime}}$ if $[\mathbf{x}]_{\mathcal{B}}=(1,-2,1)^{T}$.
$[\mathbf{x}]_{\mathcal{B}}=(1)\left[\begin{array}{r}5 \\ -4 \\ 2\end{array}\right]+(-2)\left[\begin{array}{r}1 \\ -1 \\ 3\end{array}\right]+(1)\left[\begin{array}{r}-6 \\ 1 \\ 14\end{array}\right]=\left[\begin{array}{r}-3 \\ -1 \\ 10\end{array}\right] \Longrightarrow[\mathbf{x}]_{\mathcal{E}}=\left[\begin{array}{r}-3 \\ -1 \\ 10\end{array}\right]$
$\left[\mathcal{B}^{\prime} \mid[\mathbf{x}]_{\mathcal{E}}\right]=\left[\begin{array}{rrr|r}\boxed{1} & -4 & -2 & -3 \\ 2 & -9 & 1 & -1 \\ -3 & 12 & 7 & 10\end{array}\right] \xrightarrow[3 R_{1}+R_{3} \rightarrow R_{3}]{(-2) R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{rcc|c}\boxed{1} & -4 & -2 & -3 \\ 0 & -1 & 5 & 5 \\ 0 & 0 & 1 & 1\end{array}\right] \xrightarrow{(-1) R_{2} \rightarrow R_{2}}\left[\begin{array}{rrrr|r}\boxed{1} & -4 & -2 & -3 \\ 0 & 1 & -5 & -5 \\ 0 & 0 & 1 & 1\end{array}\right]$
$\xrightarrow[2 R_{3}+R_{1} \rightarrow R_{1}]{5 R_{3}+R_{2} \rightarrow R_{2}}\left[\begin{array}{rcc|r}\boxed{1} & -4 & 0 & -1 \\ 0 & \boxed{1} & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right] \xrightarrow{4 R_{2}+R_{1} \rightarrow R_{1}}\left[\begin{array}{ccc|c}\boxed{1} & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]=\left[I \mid[\mathbf{x}]_{\mathcal{B}^{\prime}}\right]$
$\therefore \quad[\mathbf{x}]_{\mathcal{B}^{\prime}}=\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right] \quad$ OR $\quad[\mathbf{x}]_{\mathcal{B}^{\prime}}=(-1,0,1)^{T}$
BE CAREFUL: $[\mathbf{x}]_{\mathcal{B}^{\prime}} \underline{\text { cannot }}$ be written as $-\widehat{\mathbf{i}}+\widehat{\mathbf{k}}$ since basis \mathcal{B}^{\prime} is non-standard!

EX 4.7.4: Let bases $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right],\left[\begin{array}{r}-1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 0\end{array}\right]\right\}$ and $\mathcal{B}^{\prime}=\left\{\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{r}-2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$.
(a) Find the transition matrix $\underset{\mathcal{B}^{\prime} \leftarrow \mathcal{B}}{P}$ from basis \mathcal{B} to basis \mathcal{B}^{\prime}.

$$
\begin{aligned}
& {\left[\mathcal{B}^{\prime} \mid \mathcal{B}\right]=\left[\begin{array}{rrr|rrr}
0 & -2 & 1 & 1 & -1 & 2 \\
2 & 1 & 1 & 2 & 2 & 4 \\
1 & 0 & 1 & 4 & 0 & 0
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{3}}\left[\begin{array}{rrr|rrr}
\hline 1 & 0 & 1 & 4 & 0 & 0 \\
2 & 1 & 1 & 2 & 2 & 4 \\
0 & -2 & 1 & 1 & -1 & 2
\end{array}\right] \xrightarrow{(-2) R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{rrrrrrrrr}
\hline 1 & 0 & 1 & 4 & 0 & 0 \\
0 & -1 & -6 & 2 & 4 \\
0 & -2 & 1 & 1 & -1 & 2
\end{array}\right]} \\
& \xrightarrow{2 R_{2}+R_{3} \rightarrow R_{3}}\left[\begin{array}{ccc|rrr}
\hline 1 & 0 & 1 & 4 & 0 & 0 \\
0 & \boxed{1} & -1 & -6 & 2 & 4 \\
0 & 0 & -1 & -11 & 3 & 10
\end{array}\right] \xrightarrow{(-1) R_{3} \rightarrow R_{3}}\left[\begin{array}{rrrrrrr}
\boxed{1} & 0 & 1 & 4 & 0 & 0 \\
0 & \boxed{1} & -1 & -6 & 2 & 4 \\
0 & 0 & 1 & 11 & -3 & -10
\end{array}\right]
\end{aligned}
$$

(b) Find $[\mathbf{x}]_{\mathcal{B}^{\prime}}$ if $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right]$.
$[\mathbf{x}]_{\mathcal{B}^{\prime}}=\underset{\mathcal{B}^{\prime} \leftarrow \mathcal{B}}{P}[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{rrr}-7 & 3 & 10 \\ 5 & -1 & -6 \\ 11 & -3 & -10\end{array}\right]\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right]=\left[\begin{array}{r}-5 \\ 7 \\ 13\end{array}\right]$
(c) Find the transition matrix $\underset{\mathcal{B} \leftarrow \mathcal{B}^{\prime}}{P}$ from basis \mathcal{B}^{\prime} to basis \mathcal{B}.
$\left[\mathcal{B} \mid \mathcal{B}^{\prime}\right]=\left[\begin{array}{rrr|rrr}1 & -1 & 2 & 0 & -2 & 1 \\ 2 & 2 & 4 & 2 & 1 & 1 \\ 4 & 0 & 0 & 1 & 0 & 1\end{array}\right] \xrightarrow[(-4) R_{1}+R_{3} \rightarrow R_{3}]{(-2) R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{rrr|rrr}\boxed{1} & -1 & 2 & 0 & -2 & 1 \\ 0 & 4 & 0 & 2 & 5 & -1 \\ 0 & 4 & -8 & 1 & 8 & -3\end{array}\right]$
$\xrightarrow{(-1) R_{2}+R_{3} \rightarrow R_{3}}\left[\begin{array}{rrr|rrr}1 & -1 & 2 & 0 & -2 & 1 \\ 0 & 4 & 0 & 2 & 5 & -1 \\ 0 & 0 & -8 & -1 & 3 & -2\end{array}\right] \xrightarrow[\left(-\frac{1}{8}\right) R_{3} \rightarrow R_{3}]{\left(\frac{1}{4}\right) R_{2} \rightarrow R_{2}}\left[\begin{array}{rrr|rrr}\hline 1 & -1 & 2 & 0 & -2 & 1 \\ 0 & \boxed{1} & 0 & 1 / 2 & 5 / 4 & -1 / 4 \\ 0 & 0 & 1 & 1 / 8 & -3 / 8 & 1 / 4\end{array}\right]$
$\xrightarrow{(-2) R_{3}+R_{1} \rightarrow R_{1}}\left[\begin{array}{ccc|rrr}\boxed{1} & -1 & 0 & -1 / 4 & -5 / 4 & 1 / 2 \\ 0 & \boxed{1} & 0 & 1 / 2 & 5 / 4 & -1 / 4 \\ 0 & 0 & 1 & 1 / 8 & -3 / 8 & 1 / 4\end{array}\right] \xrightarrow{R_{2}+R_{1} \rightarrow R_{1}}\left[\begin{array}{rrr|rrr}\hline 1 & 0 & 0 & 1 / 4 & 0 & 1 / 4 \\ 0 & 1 & 0 & 1 / 2 & 5 / 4 & -1 / 4 \\ 0 & 0 & 1 & 1 / 8 & -3 / 8 & 1 / 4\end{array}\right]=\left[\left.\begin{array}{c} \\ \hline\end{array} \right\rvert\, \underset{\mathcal{B} \leftarrow \mathcal{B}^{\prime}}{P}\right]$
$\therefore \underset{\mathcal{B} \leftarrow \mathcal{B}^{\prime}}{P}=\left[\begin{array}{rrr}1 / 4 & 0 & 1 / 4 \\ 1 / 2 & 5 / 4 & -1 / 4 \\ 1 / 8 & -3 / 8 & 1 / 4\end{array}\right]$
(d) Find $[\mathbf{x}]_{\mathcal{B}}$ if $[\mathbf{x}]_{\mathcal{B}^{\prime}}=(2,3,0)^{T}$.

$$
[\mathbf{x}]_{\mathcal{B}}=\underset{\mathcal{B} \leftarrow \mathcal{B}^{\prime}}{P}[\mathbf{x}]_{\mathcal{B}^{\prime}}=\left[\begin{array}{rrr}
1 / 4 & 0 & 1 / 4 \\
1 / 2 & 5 / 4 & -1 / 4 \\
1 / 8 & -3 / 8 & 1 / 4
\end{array}\right]\left[\begin{array}{l}
2 \\
3 \\
0
\end{array}\right]=\left[\begin{array}{r}
1 / 2 \\
19 / 4 \\
-7 / 8
\end{array}\right]
$$

