• ASSUMPTIONS MADE THROUGHOUT THIS SECTION:

- Let V be a <u>finite-dimensional</u> vector space.
- Let $\mathcal{B} = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$ be an ordered basis for V.
- Let $\mathcal{B}' = {\mathbf{v}'_1, \mathbf{v}'_2, \dots, \mathbf{v}'_n}$ be another ordered basis for V.
- Let $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ be the ordered **<u>standard basis</u>** for V.

• COORDINATE VECTOR RELATIVE TO A BASIS:

Let vector $\mathbf{x} \in V$ s.t. $\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n$

Then the coordinate vector of x relative to basis \mathcal{B} is $[\mathbf{x}]_{\mathcal{B}} = (c_1, c_2, \dots, c_n)^T$ where c_1, c_2, \dots, c_n are the coordinates of x relative to basis \mathcal{B} . $[\mathbf{x}]_{\mathcal{B}}$ is also known as the \mathcal{B} -coordinate vector of x. c_1, c_2, \dots, c_n are also known as the \mathcal{B} -coordinates of x. The order of the vectors in the basis is critical, hence the term ordered basis.

- CONVERTING $[\mathbf{x}]_{\mathcal{B}} \rightarrow [\mathbf{x}]_{\mathcal{E}}$ (PROCEDURE):
 - Let $[\mathbf{x}]_{\mathcal{B}} = (c_1, c_2, \dots, c_n)^T$.

Then $[\mathbf{x}]_{\mathcal{E}} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n \quad \leftarrow \text{(Simplify linear combination)}$

• CONVERTING $[\mathbf{x}]_{\mathcal{E}} \rightarrow [\mathbf{x}]_{\mathcal{B}}$ (PROCEDURE):

<u>GIVEN</u>: Vector \mathbf{x} in standard basis coordinates: $[\mathbf{x}]_{\mathcal{E}}$

<u>TASK</u>: Write vector \mathbf{x} in non-std basis \mathcal{B} -coordinates: $[\mathbf{x}]_{\mathcal{B}}$

(1) $[\mathcal{B} \mid [\mathbf{x}]_{\mathcal{E}}] \xrightarrow{Gauss-Jordan} [I \mid [\mathbf{x}]_{\mathcal{B}}]$

• CONVERTING $[\mathbf{x}]_{\mathcal{B}} \to [\mathbf{x}]_{\mathcal{B}'}$ (PROCEDURE):

<u>GIVEN</u>: Vector \mathbf{x} in non-std basis \mathcal{B} -coordinates: $[\mathbf{x}]_{\mathcal{B}}$

<u>TASK:</u> Write vector \mathbf{x} in non-std basis \mathcal{B}' -coordinates: $[\mathbf{x}]_{\mathcal{B}'}$

(1) Convert
$$[\mathbf{x}]_{\mathcal{B}} \to [\mathbf{x}]_{\mathcal{E}}$$

(2) $[\mathcal{B}' \mid [\mathbf{x}]_{\mathcal{E}}] \xrightarrow{Gauss-Jordan} [I \mid [\mathbf{x}]_{\mathcal{B}'}]$

• TRANSITION MATRIX (DEFINITION):

The transition matrix $\underset{\mathcal{B}' \leftarrow \mathcal{B}}{P}$ from \mathcal{B} to \mathcal{B}' satisfies $\underset{\mathcal{B}' \leftarrow \mathcal{B}}{P}[\mathbf{x}]_{\mathcal{B}} = [\mathbf{x}]_{\mathcal{B}'}$ The transition matrix $\underset{\mathcal{B} \leftarrow \mathcal{B}'}{P}$ from \mathcal{B}' to \mathcal{B} satisfies $\underset{\mathcal{B} \leftarrow \mathcal{B}'}{P}[\mathbf{x}]_{\mathcal{B}'} = [\mathbf{x}]_{\mathcal{B}}$

• INVERSE OF A TRANSITION MATRIX:

$$\begin{pmatrix} P \\ \mathcal{B}_{\leftarrow \mathcal{B}'} \end{pmatrix}^{-1} = \mathop{P}_{\mathcal{B}' \leftarrow \mathcal{B}} \quad \text{and} \quad \begin{pmatrix} P \\ \mathcal{B}' \leftarrow \mathcal{B} \end{pmatrix}^{-1} = \mathop{P}_{\mathcal{B} \leftarrow \mathcal{B}}$$

• FINDING THE TRANSITION MATRIX (PROCEDURE):

<u>TASK:</u> Find the transition matrix $\underset{\mathcal{B'} \leftarrow \mathcal{B}}{P}$ from \mathcal{B} to $\mathcal{B'}$.

(1)
$$[\mathcal{B}' \mid \mathcal{B}] \xrightarrow{Gauss-Jordan} \left[I \mid \underset{\mathcal{B}' \leftarrow \mathcal{B}}{P} \right]$$

^{©2015} Josh Engwer – Revised September 30, 2015

$$\boxed{\underline{\mathbf{EX} \ 4.7.1:}} \text{ Let basis } \mathcal{B} = \left\{ \begin{bmatrix} 1\\2\\-3 \end{bmatrix}, \begin{bmatrix} -4\\-9\\12 \end{bmatrix}, \begin{bmatrix} -2\\1\\7 \end{bmatrix} \right\} \equiv \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}. \text{ Find } [\mathbf{x}]_{\mathcal{E}} \text{ if } [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 4\\1\\-2 \end{bmatrix}.$$

$$\boxed{\mathbf{EX 4.7.2:}} \text{ Let basis } \mathcal{B} = \left\{ \begin{bmatrix} 1\\2\\-3 \end{bmatrix}, \begin{bmatrix} -4\\-9\\12 \end{bmatrix}, \begin{bmatrix} -2\\1\\7 \end{bmatrix} \right\} \equiv \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}. \text{ Find } [\mathbf{x}]_{\mathcal{B}} \text{ if } [\mathbf{x}]_{\mathcal{E}} = \begin{bmatrix} 1\\-8\\-5 \end{bmatrix}.$$

$$\boxed{\mathbf{EX 4.7.3:}} \text{ Let bases } \mathcal{B} = \left\{ \begin{bmatrix} 5\\-4\\2 \end{bmatrix}, \begin{bmatrix} 1\\-1\\3 \end{bmatrix}, \begin{bmatrix} -6\\1\\14 \end{bmatrix} \right\} \text{ and } \mathcal{B}' = \left\{ \begin{bmatrix} 1\\2\\-3 \end{bmatrix}, \begin{bmatrix} -4\\-9\\12 \end{bmatrix}, \begin{bmatrix} -2\\1\\7 \end{bmatrix} \right\}.$$
Find $[\mathbf{x}]_{\mathcal{B}'}$ if $[\mathbf{x}]_{\mathcal{B}} = (1, -2, 1)^T$.

$$\underline{\mathbf{EX 4.7.4:}} \quad \text{Let bases } \mathcal{B} = \left\{ \begin{bmatrix} 1\\2\\4 \end{bmatrix}, \begin{bmatrix} -1\\2\\0 \end{bmatrix}, \begin{bmatrix} 2\\4\\0 \end{bmatrix} \right\} \text{ and } \mathcal{B}' = \left\{ \begin{bmatrix} 0\\2\\1 \end{bmatrix}, \begin{bmatrix} -2\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}.$$

(a) Find the transition matrix $\underset{\mathcal{B}' \leftarrow \mathcal{B}}{P}$ from basis \mathcal{B} to basis \mathcal{B}' .

(b) Find
$$[\mathbf{x}]_{\mathcal{B}'}$$
 if $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 2\\ 3\\ 0 \end{bmatrix}$.

(c) Find the transition matrix $\underset{\mathcal{B}\leftarrow\mathcal{B}'}{P}$ from basis \mathcal{B}' to basis \mathcal{B} .

(d) Find $[\mathbf{x}]_{\mathcal{B}}$ if $[\mathbf{x}]_{\mathcal{B}'} = (2,3,0)^T$.

 $[\]textcircled{C}2015$ Josh Engwer – Revised September 30, 2015