- ASSUMPTIONS MADE THROUGHOUT THIS SECTION:

Let V be a finite-dimensional vector space.
Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be an ordered basis for V.
Let $\mathcal{B}^{\prime}=\left\{\mathbf{v}_{1}^{\prime}, \mathbf{v}_{2}^{\prime}, \ldots, \mathbf{v}_{n}^{\prime}\right\}$ be another ordered basis for V.
Let $\mathcal{E}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ be the ordered standard basis for V.

- COORDINATE VECTOR RELATIVE TO A BASIS:

Let vector $\mathbf{x} \in V$ s.t. $\mathbf{x}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}$
Then the coordinate vector of \mathbf{x} relative to basis \mathcal{B} is $\quad[\mathbf{x}]_{\mathcal{B}}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)^{T}$
where $c_{1}, c_{2}, \ldots, c_{n}$ are the coordinates of \mathbf{x} relative to basis \mathcal{B}.
$[\mathbf{x}]_{\mathcal{B}}$ is also known as the \mathcal{B}-coordinate vector of \mathbf{x}.
$c_{1}, c_{2}, \ldots, c_{n}$ are also known as the \mathcal{B}-coordinates of \mathbf{x}.
The order of the vectors in the basis is critical, hence the term ordered basis.

- CONVERTING $[\mathrm{x}]_{\mathcal{B}} \rightarrow[\mathrm{x}]_{\mathcal{E}} \quad$ (PROCEDURE):

Let $\quad[\mathbf{x}]_{\mathcal{B}}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)^{T}$.
Then $[\mathbf{x}]_{\mathcal{E}}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n} \leftarrow$ (Simplify linear combination)

- CONVERTING $[\mathrm{x}]_{\mathcal{E}} \rightarrow[\mathrm{x}]_{\mathcal{B}} \quad$ (PROCEDURE):

GIVEN: Vector \mathbf{x} in standard basis coordinates: $[\mathbf{x}]_{\mathcal{E}}$
TASK: Write vector \mathbf{x} in non-std basis \mathcal{B}-coordinates: $[\mathbf{x}]_{\mathcal{B}}$
(1) $\left[\mathcal{B} \mid[\mathbf{x}]_{\mathcal{E}}\right] \xrightarrow{\text { Gauss-Jordan }}\left[I \mid[\mathbf{x}]_{\mathcal{B}}\right]$

- CONVERTING $[\mathrm{x}]_{\mathcal{B}} \rightarrow[\mathrm{x}]_{\mathcal{B}^{\prime}}$ (PROCEDURE):

GIVEN: Vector \mathbf{x} in non-std basis \mathcal{B}-coordinates: $[\mathbf{x}]_{\mathcal{B}}$
TASK: Write vector \mathbf{x} in non-std basis \mathcal{B}^{\prime}-coordinates: $[\mathbf{x}]_{\mathcal{B}^{\prime}}$
(1) Convert $[\mathbf{x}]_{\mathcal{B}} \rightarrow[\mathbf{x}]_{\mathcal{E}}$
(2) $\left[\mathcal{B}^{\prime} \mid[\mathbf{x}]_{\mathcal{E}}\right] \xrightarrow{\text { Gauss-Jordan }}\left[I \mid[\mathbf{x}]_{\mathcal{B}^{\prime}}\right]$

- TRANSITION MATRIX (DEFINITION):

The transition matrix $\underset{\mathcal{B}^{\prime} \leftarrow \mathcal{B}}{P}$ from \mathcal{B} to \mathcal{B}^{\prime} satisfies $\underset{\mathcal{B}^{\prime} \leftarrow \mathcal{B}}{P}[\mathbf{x}]_{\mathcal{B}}=[\mathbf{x}]_{\mathcal{B}^{\prime}}$
The transition matrix $\underset{\mathcal{B} \leftarrow \mathcal{B}^{\prime}}{P}$ from \mathcal{B}^{\prime} to \mathcal{B} satisfies $\underset{\mathcal{B} \leftarrow \mathcal{B}^{\prime}}{P}[\mathbf{x}]_{\mathcal{B}^{\prime}}=[\mathbf{x}]_{\mathcal{B}}$

- INVERSE OF A TRANSITION MATRIX:
$\binom{P}{\mathcal{B} \leftarrow \mathcal{B}^{\prime}}^{-1}=\underset{\mathcal{B}^{\prime} \leftarrow \mathcal{B}}{P} \quad$ and $\quad\binom{P}{\mathcal{B}^{\prime} \leftarrow \mathcal{B}}^{-1}=\underset{\mathcal{B} \leftarrow \mathcal{B}^{\prime}}{P}$
- FINDING THE TRANSITION MATRIX (PROCEDURE):

TASK: Find the transition matrix $\underset{\mathcal{B}^{\prime} \leftarrow \mathcal{B}}{P}$ from \mathcal{B} to \mathcal{B}^{\prime}.
(1) $\quad\left[\mathcal{B}^{\prime} \mid \mathcal{B}\right] \xrightarrow{\text { Gauss-Jordan }}\left[I \mid \underset{\mathcal{B}^{\prime} \leftarrow \mathcal{B}}{P}\right]$

EX 4.7.1: Let basis $\mathcal{B}=\left\{\left[\begin{array}{r}1 \\ 2 \\ -3\end{array}\right],\left[\begin{array}{r}-4 \\ -9 \\ 12\end{array}\right],\left[\begin{array}{r}-2 \\ 1 \\ 7\end{array}\right]\right\} \equiv\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\} . \quad$ Find $[\mathbf{x}]_{\mathcal{E}}$ if $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{r}4 \\ 1 \\ -2\end{array}\right]$.
$\underline{\underline{\text { EX 4.7.2: }}}$ Let basis $\mathcal{B}=\left\{\left[\begin{array}{r}1 \\ 2 \\ -3\end{array}\right],\left[\begin{array}{r}-4 \\ -9 \\ 12\end{array}\right],\left[\begin{array}{r}-2 \\ 1 \\ 7\end{array}\right]\right\} \equiv\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\} . \quad$ Find $[\mathbf{x}]_{\mathcal{B}}$ if $[\mathbf{x}]_{\mathcal{E}}=\left[\begin{array}{r}1 \\ -8 \\ -5\end{array}\right]$.

EX 4.7.3: Let bases $\mathcal{B}=\left\{\left[\begin{array}{r}5 \\ -4 \\ 2\end{array}\right],\left[\begin{array}{r}1 \\ -1 \\ 3\end{array}\right],\left[\begin{array}{r}-6 \\ 1 \\ 14\end{array}\right]\right\}$ and $\mathcal{B}^{\prime}=\left\{\left[\begin{array}{r}1 \\ 2 \\ -3\end{array}\right],\left[\begin{array}{r}-4 \\ -9 \\ 12\end{array}\right],\left[\begin{array}{r}-2 \\ 1 \\ 7\end{array}\right]\right\}$.
Find $[\mathbf{x}]_{\mathcal{B}^{\prime}}$ if $[\mathbf{x}]_{\mathcal{B}}=(1,-2,1)^{T}$.

EX 4.7.4: Let bases $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right],\left[\begin{array}{r}-1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 0\end{array}\right]\right\}$ and $\mathcal{B}^{\prime}=\left\{\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{r}-2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$.
(a) Find the transition matrix $\underset{\mathcal{B}^{\prime} \leftarrow \mathcal{B}}{P}$ from basis \mathcal{B} to basis \mathcal{B}^{\prime}.
(b) Find $[\mathbf{x}]_{\mathcal{B}^{\prime}}$ if $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right]$.
(c) Find the transition matrix $\underset{\mathcal{B} \leftarrow \mathcal{B}^{\prime}}{P}$ from basis \mathcal{B}^{\prime} to basis \mathcal{B}.
(d) Find $[\mathbf{x}]_{\mathcal{B}}$ if $[\mathbf{x}]_{\mathcal{B}^{\prime}}=(2,3,0)^{T}$.

