VECTORS: NORMS, DOT PRODUCTS, PROJECTIONS [LARSON 5.1]

• NORMS OF VECTORS: The norm of a vector is simply its "length" or "magnitude"

- The **norm** of vector $\mathbf{v} = (v_1, v_2)^T \in \mathbb{R}^2$ is: $||\mathbf{v}|| := \sqrt{v_1^2 + v_2^2}$
- The **norm** of vector $\mathbf{v} = (v_1, v_2, v_3)^T \in \mathbb{R}^3$ is: $||\mathbf{v}|| := \sqrt{v_1^2 + v_2^2 + v_3^2}$
- The **norm** of vector $\mathbf{v} = (v_1, v_2, \cdots, v_n)^T \in \mathbb{R}^n$ is: $||\mathbf{v}|| := \sqrt{v_1^2 + v_2^2 + \cdots + v_n^2}$

UNIT VECTORS (AKA DIRECTION VECTORS): A unit vector
$$\hat{\mathbf{v}}$$
 is a vector with norm one.

- A **unit vector** (AKA **direction vector**) for vector **v** is:

$$\widehat{\mathbf{v}} := \frac{\mathbf{v}}{||\mathbf{v}||}$$

• DOT PRODUCTS OF VECTORS:

- The dot product of $\mathbf{v} = (v_1, v_2)^T$ and $\mathbf{w} = (w_1, w_2)^T$ is: $\mathbf{v} \cdot \mathbf{w} := \mathbf{v}^T \mathbf{w} = v_1 w_1 + v_2 w_2$ - The dot product of $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ and $\mathbf{w} = (w_1, w_2, w_3)^T$ is: $\mathbf{v} \cdot \mathbf{w} := \mathbf{v}^T \mathbf{w} = v_1 w_1 + v_2 w_2 + v_3 w_3$ - The dot product of $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ and $\mathbf{w} = (w_1, w_2, \cdots, w_n)^T$ is: $\mathbf{v} \cdot \mathbf{w} := \mathbf{v}^T \mathbf{w} = v_1 w_1 + v_2 w_2 + \cdots + v_n w_n$
- **PROPERTIES OF DOT PRODUCTS:** Let vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and scalar $\alpha \in \mathbb{R}$. Then:

(DP1)	$\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$	Commutativity of Dot Product
(DP2)	$\alpha(\mathbf{v} \cdot \mathbf{w}) = (\alpha \mathbf{v}) \cdot \mathbf{w} = \mathbf{v} \cdot (\alpha \mathbf{w})$	Associativity of Dot Product
(DP3)	$\vec{0}\cdot\mathbf{v}=\mathbf{v}\cdot\vec{0}=0$	Dot Product with $\vec{0}$ is Zero Scalar
(DP4)	$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$	Distributivity of Dot Product over VA
(DP5)	$\mathbf{v}\cdot\mathbf{v}= \mathbf{v} ^2$	Dot Product-Norm Relationship

• <u>COORDINATE-FREE DEFINITION OF DOT PRODUCT</u>: Let vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$. Then:

$$\mathbf{v} \cdot \mathbf{w} = ||\mathbf{v}|| ||\mathbf{w}|| \cos \theta$$
 where $\theta \in [0, \pi]$

• **ORTHOGONALITY OF VECTORS:**

Vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ are orthogonal $\iff \mathbf{v} \perp \mathbf{w} \iff \mathbf{v} \cdot \mathbf{w} = 0 \iff \mathbf{v}^T \mathbf{w} = 0$

• (ORTHOGONAL) PROJECTION ONTO A VECTOR: Let vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ such that $\mathbf{w} \neq \mathbf{\vec{0}}$. Then:

The (orthogonal) projection of v onto w is:
$$\operatorname{proj}_{\mathbf{w}} \mathbf{v} := \left(\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}\right) \mathbf{w} = \left(\frac{\mathbf{v}^T \mathbf{w}}{\mathbf{w}^T \mathbf{w}}\right) \mathbf{w}$$

 $[\]textcircled{O}2015$ Josh Engwer – Revised October 22, 2015

EX 5.1.1: Let vectors
$$\mathbf{v} = (1,2)^T$$
 and $\mathbf{w} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$.

- (a) Compute dot product $\mathbf{v} \cdot \mathbf{w}$.
- (b) Are $\mathbf{v} \& \mathbf{w}$ orthogonal?
- (c) Compute $||\mathbf{v}||$.

- (d) Find unit vector $\widehat{\mathbf{v}}.$
- (e) Compute orthogonal projections $\, \mathrm{proj}_{\mathbf{w}} \mathbf{v} \,$ and $\, \mathrm{proj}_{\mathbf{v}} \mathbf{w}.$

EX 5.1.2: Let vectors
$$\mathbf{v} = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$$
 and $\mathbf{w} = (4, -5, -6)^T$.

- (a) Compute dot product $\mathbf{v}^T \mathbf{w}$.
- (b) Are $\mathbf{v} \& \mathbf{w}$ orthogonal?
- (c) Compute $||\mathbf{w}||$.
- (d) Find unit vector $\widehat{\mathbf{w}}$.
- (e) Compute orthogonal projections $\operatorname{proj}_{\mathbf{w}} \mathbf{v}$ and $\operatorname{proj}_{\mathbf{v}} \mathbf{w}$.

<u>EX 5.1.3</u>: Let vectors $\mathbf{u} = (1, 2, 3, 4)^T$ and $\mathbf{v} = (-3, 3, 0, -1)^T$.

(a) Compute dot product $\mathbf{v}^T \mathbf{u}$.

(b) Are \mathbf{u} & \mathbf{v} orthogonal?

(c) Compute $||\mathbf{v}||$.

(d) Find unit vector $\widehat{\mathbf{v}}.$

(e) Compute orthogonal projections $\, \mathrm{proj}_{\mathbf{u}} \mathbf{v} \,$ and $\, \mathrm{proj}_{\mathbf{v}} \mathbf{u}.$

©2015 Josh Engwer – Revised October 22, 2015