INNER PRODUCT SPACES [LARSON 5.2]

• INNER PRODUCT (DEFINITION): Let V be a vector space. Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $\alpha \in \mathbb{R}$.

An **inner product** on V is a function $\langle \cdot, \cdot \rangle : V \to \mathbb{R}$ satisfying the following inner product axioms:

Non-negativity of Self-Inner Product (IPS1) $\langle \mathbf{u}, \mathbf{u} \rangle > 0$

(IPS2) $\langle \mathbf{u}, \mathbf{u} \rangle = 0 \iff \mathbf{u} = \vec{\mathbf{0}}$ Only $\vec{\mathbf{0}}$ has Self-Inner Product of Zero

(IPS3) $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$ Commutativity of Inner Product

(IPS4) $\langle \alpha \mathbf{u}, \mathbf{v} \rangle = \alpha \langle \mathbf{u}, \mathbf{v} \rangle$ Inner Product of SM is SM of Inner Product

(IPS5) $\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$ Distributivity of VA over Inner Product

• INNER PRODUCT SPACE (DEFINITION):

A vector space V with an inner product $\langle \cdot, \cdot \rangle$ is called an **inner product space**.

A compact notation for an inner product space is: $(V, \langle \cdot, \cdot \rangle)$

• INNER PRODUCT (PROPERTIES): Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $\alpha \in \mathbb{R}$.

(IP1) $\langle \mathbf{u}, \alpha \mathbf{v} \rangle = \alpha \langle \mathbf{u}, \mathbf{v} \rangle$ Associativity of Inner Product

Inner Product with $\vec{\mathbf{0}}$ is Zero Scalar (IP2) $\langle \mathbf{u}, \vec{\mathbf{0}} \rangle = \langle \vec{\mathbf{0}}, \mathbf{u} \rangle = 0$

(IP3) $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$ Distributivity of Inner Product over VA

• THE NORM INDUCED BY AN INNER PRODUCT: Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Let $\mathbf{u} \in V$.

The norm $||\cdot||$ induced by the inner product $\langle \cdot, \cdot \rangle$ of V is defined to be:

 $||\mathbf{u}|| := \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$

• NORMED VECTOR SPACE (DEFINITION): A vector space V with norm $||\cdot||$ is called **normed vector space**.

A compact notation for a normed vector space is: $(V, ||\cdot||)$

• THE METRIC INDUCED BY A NORM: Let $(V, ||\cdot||)$ be a normed vector space. Let $\mathbf{u}, \mathbf{v} \in V$.

The **metric** $d(\cdot, \cdot)$ **induced by the norm** $||\cdot||$ **of** V is defined to be:

 $d(\mathbf{u}, \mathbf{v}) := ||\mathbf{u} - \mathbf{v}||$

- INNER PRODUCT (ORTHOGONALITY): "Vectors" \mathbf{v}, \mathbf{w} are orthogonal $\iff \mathbf{v} \perp \mathbf{w} \iff \langle \mathbf{v}, \mathbf{w} \rangle = 0$
- $\bullet \ \ \underline{\text{(ORTHOGONAL) PROJECTION ONTO A "VECTOR":}} \ \ \mathrm{proj}_{\mathbf{w}}\mathbf{v} := \left(\frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle}\right)\mathbf{w}$
- STANDARD INNER PRODUCT SPACES:

INNER PRODUCT SPACE	PROTOTYPE "VECTORS"	$\begin{array}{c} \textbf{INNER} \\ \textbf{PRODUCT} \\ \langle \cdot, \cdot \rangle \end{array}$	INDUCED NORM	$\begin{array}{c} \textbf{INDUCED} \\ \textbf{METRIC} \\ d(\cdot,\cdot) \end{array}$
\mathbb{R}^n	$\mathbf{u} = (u_1, \dots, u_n)^T, \ \mathbf{v} = (v_1, \dots, v_n)^T$	$\langle \mathbf{u}, \mathbf{v} \rangle := \sum_{k=1}^{n} u_k v_k$	$ \mathbf{u} := \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$	$d(\mathbf{u}, \mathbf{v}) := \mathbf{u} - \mathbf{v} $
$\mathbb{R}^{m \times n}$	$A = [a_{ij}]_{m \times n}, \ B = [b_{ij}]_{m \times n}$	$\langle A, B \rangle := \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} b_{ij}$	$ A := \sqrt{\langle A, A \rangle}$	d(A,B) := A - B
P_n	$p(t) = p_0 + p_1 t + p_2 t^2 + \dots + p_n t^n$ $q(t) = q_0 + q_1 t + q_2 t^2 + \dots + q_n t^n$ scalars $t_1, \dots, t_{n+1} \in \mathbb{R}$	$\langle p, q \rangle := \sum_{k=1}^{n+1} p(t_k) q(t_k)$	$ p :=\sqrt{\langle p,p angle}$	d(p,q) := p - q
C[a,b]	f(x), g(x)	$\langle f, g \rangle := \int_{a}^{b} f(x)g(x) \ dx$	$ f :=\sqrt{\langle f,f angle}$	d(f,g) := f - g

REMARK: Other inner products are possible with these spaces but such inner products won't be considered here.

Moreover, define inner product $\langle \cdot, \cdot \rangle$ on \mathbb{R}^2 as so: $\langle \mathbf{v}, \mathbf{w} \rangle := v_1 w_1 + v_2 w_2 = \mathbf{v}^T \mathbf{w}$

- (a) Compute inner product $\langle \mathbf{v}, \mathbf{w} \rangle$.
- (b) Are v & w orthogonal?
- (c) Compute norms $||\mathbf{v}||$ and $||\mathbf{w}||$.
- (d) Compute metric $d(\mathbf{v}, \mathbf{w})$.
- (e) Compute orthogonal projections $\operatorname{proj}_{\mathbf{w}}\mathbf{v}$ and $\operatorname{proj}_{\mathbf{v}}\mathbf{w}$.

EX 5.2.2: Let matrices $A, B \in \mathbb{R}^{2 \times 2}$ such that $A = \begin{bmatrix} 1 & -2 \\ -4 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} -5 & -3 \\ 0 & -1 \end{bmatrix}$.

Moreover, define inner product $\langle \cdot, \cdot \rangle$ on $\mathbb{R}^{2 \times 2}$ as so: $\langle A, B \rangle := a_{11}b_{11} + a_{12}b_{12} + a_{21}b_{21} + a_{22}b_{22}$

- (a) Compute inner product $\langle A, B \rangle$.
- (b) Are A & B orthogonal?
- (c) Compute norms ||A|| and ||B||.
- (d) Compute metric d(A, B).
- (e) Compute orthogonal projections $\operatorname{proj}_B A$ and $\operatorname{proj}_A B$.

(a) Compute inner product $\langle p, q \rangle$.

- (b) Are p(t) & q(t) orthogonal?
- (c) Compute norms ||p|| and ||q||.

(d) Compute metric d(p,q).

(e) Compute orthogonal projections $\, {\rm proj}_q p \,$ and $\, {\rm proj}_p q. \,$

(a) Compute inner product $\langle f, g \rangle$.

- (b) Are f(x) & g(x) orthogonal?
- (c) Compute norms ||f|| and ||g||.

(d) Compute metric d(f,g).

(e) Compute orthogonal projections $\, {\rm proj}_g f \,$ and $\, {\rm proj}_f g. \,$