SUBSPACE PROJECTIONS, DIRECT SUMS, ORTHOGONAL COMPLEMENTS [LARSON 5.4]

• (ORTHOGONAL) PROJECTION ONTO A SUBSPACE (DEFINITION):

Let $\mathcal{Q} = \{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n\}$ be an orthogonal basis for subspace W of \mathbb{R}^n .

Then the (orthogonal) projection of vector $\mathbf{v} \in \mathbb{R}^n$ onto subspace W is:

 $\operatorname{proj}_{W} \mathbf{v} := \operatorname{proj}_{span(\mathcal{Q})} \mathbf{v} = \operatorname{proj}_{\mathbf{q}_{1}} \mathbf{v} + \operatorname{proj}_{\mathbf{q}_{2}} \mathbf{v} + \dots + \operatorname{proj}_{\mathbf{q}_{n}} \mathbf{v}$

• ORTHOGONAL SUBSPACES OF \mathbb{R}^n (DEFINITION):

Subspaces S_1, S_2 of \mathbb{R}^n are **orthogonal**, denoted $S_1 \perp S_2$, if $\mathbf{v}_1^T \mathbf{v}_2 = 0$ $\forall \mathbf{v}_1 \in S_1, \forall \mathbf{v}_2 \in S_2$ i.e. vectors in one subspace are orthogonal to vectors in the other subspace.

• ORTHOGONAL COMPLEMENTS (DEFINITION):

Let W be a subspace of Euclidean inner product space $(\mathbb{R}^n, \langle \cdot, \cdot \rangle_2)$.

Then the **orthogonal complement of** W, denoted W^{\perp} , is $W^{\perp} := \{ \mathbf{w}^{\perp} \in \mathbb{R}^n : \langle \mathbf{w}, \mathbf{w}^{\perp} \rangle_2 = 0 \ \forall \mathbf{w} \in W \}$

i.e. W^{\perp} is the set of all vectors in \mathbb{R}^n that are orthogonal to all vectors in W. Clearly, by definition, $W \perp W^{\perp}$.

<u>SPECIAL CASES:</u> $(\mathbb{R}^n)^{\perp} = \{\vec{0}\}$ AND $\{\vec{0}\}^{\perp} = \mathbb{R}^n$

• FINDING THE ORTHOGONAL COMPLEMENT (PROCEDURE):

<u>GIVEN</u>: Subspace W of \mathbb{R}^n such that $W = \operatorname{span}\{\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_p\}$.

<u>TASK:</u> Find orthogonal complement W^{\perp} .

(1) Form matrix
$$A = \begin{bmatrix} | & | & | \\ \mathbf{w}_1 & \mathbf{w}_2 & \cdots & \mathbf{w}_p \\ | & | & | \end{bmatrix}$$

(2) $W^{\perp} = \operatorname{NulSp}(A^T) \implies [A^T \mid \vec{\mathbf{0}}] \xrightarrow{Gauss-Jordan} [\operatorname{RREF}(A^T) \mid \vec{\mathbf{0}}]$

• DIRECT SUMS OF SUBSPACES OF \mathbb{R}^n (DEFINITION): Let W_1, W_2 be two subspaces of \mathbb{R}^n .

Then \mathbb{R}^n is the **direct sum** of W_1 & W_2 , written $\mathbb{R}^n = W_1 \oplus W_2$, if

 $\mathbf{v} \in \mathbb{R}^n$ can be uniquely written as $\mathbf{v} = \mathbf{w}_1 + \mathbf{w}_2$, where $\mathbf{w}_1 \in W_1$ & $\mathbf{w}_2 \in W_2$.

i.e. each vector in \mathbb{R}^n can be uniquely written as a sum of a vector from W_1 and a vector from W_2 .

• **PROPERTIES OF ORTHOGONAL COMPLEMENTS:**

Let W be a subspace of Euclidean induced-norm inner product space $(\mathbb{R}^n, \langle \cdot, \cdot \rangle_2, || \cdot ||_2)$. Then:

- (i) W^{\perp} is also a subspace of \mathbb{R}^n
- $(ii) \quad W \cap W^{\perp} = \{\vec{\mathbf{0}}\}\$
- (*iii*) $\mathbb{R}^n = W \oplus W^{\perp}$
- (iv) $\dim(\mathbb{R}^n) = \dim(W) + \dim(W^{\perp})$
- $(v) \quad (W^{\perp})^{\perp} = W$

 $[\]textcircled{O}2015,\,2021$ Josh Engwer – Revised October 14, 2022

SUBSPACES OF A MATRIX, FULL-RANK LEAST-SQUARES [LARSON 5.4]

• FUNDAMENTAL SUBSPACES OF A MATRIX: Let matrix $A \in \mathbb{R}^{m \times n}$ such that rank(A) = r.

Then the fundamental subspaces of A are related as so:

 $\operatorname{RowSp}(A)$ $= \operatorname{ColSp}(A^T)$ (i)

 $\operatorname{ColSp}(A)^{\perp}$

- (*iv*) dim $\operatorname{ColSp}(A) = \operatorname{dim} \operatorname{ColSp}(A^T) = r$
- (v) $\mathbb{R}^m = \operatorname{ColSp}(A) \oplus \operatorname{NulSp}(A^T)$
- = NulSp (A^T) (*iii*) $\operatorname{ColSp}(A^T)^{\perp} = \operatorname{NulSp}(A)$
 - (vi) $\mathbb{R}^n = \operatorname{ColSp}(A^T) \oplus \operatorname{NulSp}(A)$

• PYTHAGOREAN THEOREM FOR ORTHOGONAL VECTORS (PTFOV):

Vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are orthogonal $\iff ||\mathbf{u} + \mathbf{v}||_2^2 = ||\mathbf{u}||_2^2 + ||\mathbf{v}||_2^2$

• BEST APPROXIMATION THEOREM:

(ii)

Let W be a subspace of \mathbb{R}^n and $\mathbf{v} \in \mathbb{R}^n$ s.t. $\mathbf{v} \notin W$. Then:

 $||\mathbf{v} - \operatorname{proj}_W \mathbf{v}||_2 < ||\mathbf{v} - \mathbf{u}||_2 \qquad \forall \mathbf{u} \in S \text{ s.t. } \mathbf{u} \neq \operatorname{proj}_W \mathbf{v}$

i.e. the projection of \mathbf{v} onto W is the "closest" vector in W to \mathbf{v} which is not in W.

 $\operatorname{proj}_W \mathbf{v}$ is called the **best approximation** to \mathbf{v} in subspace W.

• THE LEAST-SQUARES PROBLEM & SOLUTION (DEFINITION):

Let $A \in \mathbb{R}^{m \times n}$ such that m > n and $\mathbf{b} \notin \operatorname{ColSp}(A)$ such that linear system $A\mathbf{x} = \mathbf{b}$ is inconsistent & overdetermined.

Then the **least-squares problem** is to find $\mathbf{x} \in \mathbb{R}^n$ s.t. $||\mathbf{b} - A\mathbf{x}||_2^2$ is minimized: $\min ||\mathbf{b} - A\mathbf{x}||_2^2$

<u>**REMARK:**</u> Vector $(\mathbf{b} - A\mathbf{x})$ is called the **residual** of the linear system.

Vector $\mathbf{x}^* \in \mathbb{R}^n$ is a least-squares solution to $A\mathbf{x} = \mathbf{b}$ if: $\min_{\mathbf{x} \in \mathbb{R}^n} ||\mathbf{b} - A\mathbf{x}||_2^2 = ||\mathbf{b} - A\mathbf{x}^*||_2^2$

i.e. $||\mathbf{b} - A\mathbf{x}^*||_2^2$ is the minimum square-norm of the residual.

• FULL-RANK LEAST-SQUARES PROCEDURE USING NORMAL EQUATIONS:

<u>GIVEN</u>: $m \times n \ (m \ge n)$ linear system $A\mathbf{x} = \mathbf{b}$, full column rank $A, \mathbf{b} \notin \text{ColSp}(A)$.

TASK: Find Least-Squares Solution \mathbf{x}^* s.t. $||\mathbf{b} - A\mathbf{x}||_2^2$ is minimized.

- (1) Form normal equations for \mathbf{x}^* : $A^T A \mathbf{x}^* = A^T \mathbf{b}$
- (2) Solve normal equations for \mathbf{x}^* : $\begin{bmatrix} A^T A \mid A^T \mathbf{b} \end{bmatrix} \xrightarrow{Gauss-Jordan} \begin{bmatrix} I \mid \mathbf{x}^* \end{bmatrix}$
- (3) Minimize square-norm of Residual: $\min_{\mathbf{x} \in \mathbb{P}^n} ||\mathbf{b} A\mathbf{x}||_2^2 = ||\mathbf{b} A\mathbf{x}^*||_2^2$
- (4) Find Projection Matrix onto ColSp(A): $\bar{P} = A(A^T A)^{-1} A^T$
- (5) Find Best Approximation $\mathbf{b}^* \in \text{ColSp}(A)$ to \mathbf{b} : $\mathbf{b}^* = \bar{P}\mathbf{b} = A\mathbf{x}^*$

• FULL-RANK LEAST-SQUARES PROCEDURE USING REDUCED QR FACTORIZATION:

<u>GIVEN</u>: $m \times n \ (m \ge n)$ linear system $A\mathbf{x} = \mathbf{b}$, full column rank $A, \mathbf{b} \notin \text{ColSp}(A)$.

<u>TASK:</u> Find Least-Squares Solution \mathbf{x}^* s.t. $||\mathbf{b} - A\mathbf{x}||_2^2$ is minimized.

- (1) Perform Reduced QR Factorization using CGS-EN: $A = \hat{Q}\hat{R}$ (Recall that with Reduced QR, \hat{Q} is $m \times n$ and \hat{R} is $n \times n$.)
- (2) Find Projection Matrix onto ColSp(A): $\bar{P} = \hat{Q}\hat{Q}^T$
- (3) Find Best Approximation $\mathbf{b}^* \in \operatorname{ColSp}(A)$ to \mathbf{b} : $\mathbf{b}^* = \overline{P}\mathbf{b}$
- (4) Minimize square-norm of Residual: $\min_{\mathbf{x}\in\mathbb{R}^n} ||\mathbf{b} A\mathbf{x}||_2^2 = ||\mathbf{b} \bar{P}\mathbf{b}||_2^2$
- Back-solve linear system $\hat{R}\mathbf{x}^* = \hat{Q}^T \mathbf{b}$ for \mathbf{x}^* . (5)

^{©2015, 2021} Josh Engwer – Revised October 14, 2022

FULL QR, FULL-RANK LEAST-SQUARES, ORTHOGONAL MATRICES

• FULL QR FACTORIZATION VIA CLASSICAL GRAM-SCHMIDT w/ EARLY NORMING (CGS-EN):

<u>GIVEN</u>: Tall or square $(m \ge n)$ full column rank matrix $A_{m \times n}$ with columns \mathbf{a}_k .

<u>TASK:</u> Factor A = QR where $Q_{m \times m}$ has orthonormal columns $\widehat{\mathbf{q}}_k$ and $R_{m \times n}$ is upper triangular.

(1) Perform Classical Gram-Schmidt w/ early normalization on the columns of A, $\{\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n\}$:

$$\hat{Q} = \begin{bmatrix} | & | & | \\ \hat{\mathbf{q}}_1 & \hat{\mathbf{q}}_2 & \cdots & \hat{\mathbf{q}}_n \\ | & | & | & | \end{bmatrix}, \quad \hat{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & \cdots & r_{1n} \\ 0 & r_{22} & r_{23} & \cdots & r_{2n} \\ 0 & 0 & r_{33} & \cdots & r_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & r_{nn} \end{bmatrix}$$

(2) Produce a basis $\{\mathbf{a}_{n+1}, \mathbf{a}_{n+2}, \cdots, \mathbf{a}_m\}$ for orthogonal complement of column space of A:

$$\begin{bmatrix} A^T \mid \vec{\mathbf{0}} \end{bmatrix} \xrightarrow{Gauss-Jordan} \begin{bmatrix} \operatorname{RREF}(A^T) \mid \vec{\mathbf{0}} \end{bmatrix}$$

- (3) Perform CGS-EN on the basis $\{\mathbf{a}_{n+1}, \mathbf{a}_{n+2}, \cdots, \mathbf{a}_m\}$, resulting in \hat{Q}_r matrix.
- (4) Form Q by augmenting \hat{Q}_r to \hat{Q} , and form R by augmenting zero matrix below \hat{R} :

$$Q_{m \times m} := \begin{bmatrix} \hat{Q}_{m \times n} & \hat{Q}_r \end{bmatrix} = \begin{bmatrix} | & | & | & | & | & | \\ \widehat{\mathbf{q}}_1 & \widehat{\mathbf{q}}_2 & \cdots & \widehat{\mathbf{q}}_n & \widehat{\mathbf{q}}_{n+1} & \cdots & \widehat{\mathbf{q}}_m \\ | & | & | & | & | \end{bmatrix}, \qquad R_{m \times n} := \begin{bmatrix} \hat{R}_{n \times n} \\ O \end{bmatrix}$$

• FULL-RANK LEAST-SQUARES PROCEDURE USING FULL QR FACTORIZATION:

<u>GIVEN:</u> $m \times n \ (m \ge n)$ linear system $A\mathbf{x} = \mathbf{b}$, full column rank $A, \mathbf{b} \notin \text{ColSp}(A)$.

<u>TASK:</u> Find Least-Squares Solution \mathbf{x}^* s.t. $||\mathbf{b} - A\mathbf{x}||_2^2$ is minimized.

(1) Perform Full QR Factorization using CGS-EN: A = QR

$$Q_{m \times m} := \begin{bmatrix} \hat{Q}_{m \times n} & \hat{Q}_r \end{bmatrix}, \qquad R_{m \times n} := \begin{bmatrix} \hat{R}_{n \times n} \\ O \end{bmatrix}$$

- (2) Find Projection Matrix onto $\operatorname{ColSp}(A)$: $\bar{P} = \hat{Q}\hat{Q}^T$
- (3) Find best Approximation $\mathbf{b}^* \in \operatorname{ColSp}(A)$ to \mathbf{b} : $\mathbf{b}^* = \overline{P}\mathbf{b}$
- (4) Find Projection Matrix onto $\operatorname{ColSp}(A)^{\perp}$: $\bar{P}_r = \hat{Q}_r \hat{Q}_r^T$
- (5) Minimize square-norm of Residual: $\min_{\mathbf{x} \in \mathbb{P}^n} ||\mathbf{b} A\mathbf{x}||_2^2 = ||\bar{P}_r \mathbf{b}||_2^2$
- (6) Back-solve linear system $\hat{R}\mathbf{x}^* = \hat{Q}^T \mathbf{b}$ for \mathbf{x}^* .

• ORTHOGONAL MATRICES (DEFINITION): A square matrix Q is orthogonal if its columns are orthonormal.

• ORTHOGONAL MATRICES (PROPERTIES): The following properties are all equivalent:

(a) Q is an orthogonal matrix

- $(d) \quad Q^{-1} = Q^T$
- (b) The columns of Q are orthonormal
- $(c) \quad Q^T Q = Q Q^T = I$

- (a) Q^T is an orthogonal matrix
- (f) The rows of Q are orthonormal
- ORTHOGONAL MATRICES (DETERMINANTS):
 - (a) Q is orthogonal matrix $\implies \det(Q) = \pm 1$.
 - (b) $det(Q) = \pm 1 \implies Q$ is orthogonal matrix
- ORTHOGONAL MATRICES (PRESERVATION): Consider <u>Euclidean</u> inner product space $(\mathbb{R}^n, \langle \cdot, \cdot \rangle_2)$ with...

... inner product $\langle \mathbf{v}, \mathbf{w} \rangle_2 := \mathbf{v}^T \mathbf{w}$ and induced norm $||\mathbf{x}||_2 := \langle \mathbf{x}, \mathbf{x} \rangle_2$ and induced metric $d_2(\mathbf{v}, \mathbf{w}) := ||\mathbf{v} - \mathbf{w}||_2$. Then:

 $(i) \langle Q\mathbf{v}, Q\mathbf{w} \rangle_2 = \langle \mathbf{v}, \mathbf{w} \rangle_2, \qquad (ii) ||Q\mathbf{x}||_2 = ||\mathbf{x}||_2, \qquad (iii) \ d_2(Q\mathbf{v}, Q\mathbf{w}) = d_2(\mathbf{v}, \mathbf{w})$

©2015, 2021 Josh Engwer - Revised October 14, 2022

		$\left(\right)$	1		-3]])
EX 5.4.1:	Find the orthogonal complement of subspace $W = \operatorname{span} \langle V \rangle$	{	-2	,	5		} .
			0		8		J

	[1	-2		1	1
<u>EX 5.4.3</u> : Given the inconsistent linear system $A\mathbf{x} = \mathbf{b}$, where $A =$	1	-1	and $\mathbf{b} =$	1	.
	1	1		0	
(a) Find the least-squares solution \mathbf{x}^* via the normal equations.					

(b) Find the minimum square-norm residual of the linear system: $\min_{\mathbf{x} \in \mathbb{R}^2} ||A\mathbf{x} - \mathbf{b}||_2^2$

(c) Find the projection matrix \bar{P} onto the column space of A.

(d) Find the best approximation $\mathbf{b}^* \in \text{ColSp}(A)$ to the RHS vector \mathbf{b} .

 $\textcircled{O}2015,\,2021$ Josh Engwer – Revised October 14,2022

<u>EX 5.4.4</u>: Given the inconsistent linear system $A\mathbf{x} = \mathbf{b}$, where $A = \begin{bmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$.

(a) Perform the $\underline{\text{Reduced}}$ QR Factorization of A using Classical Gram-Schmidt with early normalization.

(b) Find the projection matrix \overline{P} onto the column space of A.

(c) Find the best approximation $\mathbf{b}^* \in \text{ColSp}(A)$ to the RHS vector \mathbf{b} .

(d) Find the minimum square-norm residual of the linear system: $\min_{\mathbf{x}\in\mathbb{R}^2}||A\mathbf{x}-\mathbf{b}||_2^2$

(e) Find the least-squares solution \mathbf{x}^* via the Reduced QR Factorization performed in part (a).

©2015, 2021 Josh Engwer - Revised October 14, 2022

<u>EX 5.4.5:</u> Given the inconsistent linear system $A\mathbf{x} = \mathbf{b}$, where $A = \begin{bmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$.

(a) Perform the <u>Full</u> QR Factorization of A using Classical Gram-Schmidt with early normalization.

(b) Find the projection matrix \overline{P} onto $\operatorname{ColSp}(A)$.

- (c) Find the best approximation $\mathbf{b}^* \in \text{ColSp}(A)$ to the RHS vector \mathbf{b} .
- (d) Find the projection matrix \overline{P}_r onto $\operatorname{ColSp}(A)^{\perp}$.
- (e) Find the minimum square-norm residual of the linear system: $\min_{\mathbf{x} \in \mathbb{R}^2} ||A\mathbf{x} \mathbf{b}||_2^2$
- (f) Find the least-squares solution \mathbf{x}^* via the Full QR Factorization performed in part (a).

	3	0	2	1
	-3	2	-1	
<u>EX 5.4.6</u> Perform the <u>Full</u> QR Factorization using Classical Gram-Schmidt with early normalization of $A =$	3	-1	3	
	0	-1	4	
	0	0	1	