- (ORTHOGONAL) PROJECTION ONTO A SUBSPACE (DEFINITION):

Let $\mathcal{Q}=\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{n}\right\}$ be an orthogonal basis for subspace W of \mathbb{R}^{n}.
Then the (orthogonal) projection of vector $\mathbf{v} \in \mathbb{R}^{n}$ onto subspace W is:

$$
\operatorname{proj}_{W} \mathbf{v}:=\operatorname{proj}_{\text {span }(\mathcal{Q})} \mathbf{v}=\operatorname{proj}_{\mathbf{q}_{1}} \mathbf{v}+\operatorname{proj}_{\mathbf{q}_{\mathbf{2}}} \mathbf{v}+\cdots+\operatorname{proj}_{\mathbf{q}_{n}} \mathbf{v}
$$

- ORTHOGONAL SUBSPACES OF \mathbb{R}^{n} (DEFINITION):

Subspaces S_{1}, S_{2} of \mathbb{R}^{n} are orthogonal, denoted $S_{1} \perp S_{2}$, if $\quad \mathbf{v}_{1}^{T} \mathbf{v}_{2}=0 \quad \forall \mathbf{v}_{1} \in S_{1}, \forall \mathbf{v}_{2} \in S_{2}$
i.e. vectors in one subspace are orthogonal to vectors in the other subspace.

- ORTHOGONAL COMPLEMENTS (DEFINITION):

Let W be a subspace of Euclidean inner product space $\left(\mathbb{R}^{n},\langle\cdot, \cdot\rangle_{2}\right)$.
Then the orthogonal complement of W, denoted W^{\perp}, is $\quad W^{\perp}:=\left\{\mathbf{w}^{\perp} \in \mathbb{R}^{n}:\left\langle\mathbf{w}, \mathbf{w}^{\perp}\right\rangle_{2}=0 \quad \forall \mathbf{w} \in W\right\}$
i.e. W^{\perp} is the set of all vectors in \mathbb{R}^{n} that are orthogonal to all vectors in W. Clearly, by definition, $W \perp W^{\perp}$.

SPECIAL CASES: $\quad\left(\mathbb{R}^{n}\right)^{\perp}=\{\overrightarrow{\mathbf{0}}\} \quad$ AND $\quad\{\overrightarrow{\boldsymbol{0}}\}^{\perp}=\mathbb{R}^{n}$

- FINDING THE ORTHOGONAL COMPLEMENT (PROCEDURE):

GIVEN: Subspace W of \mathbb{R}^{n} such that $W=\operatorname{span}\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \cdots, \mathbf{w}_{p}\right\}$.
TASK: Find orthogonal complement W^{\perp}.
(1) Form matrix $A=\left[\begin{array}{cccc}\mid & \mid & & \mid \\ \mathbf{w}_{1} & \mathbf{w}_{2} & \cdots & \mathbf{w}_{p} \\ \mid & \mid & & \mid\end{array}\right]$
(2) $W^{\perp}=\operatorname{NulSp}\left(A^{T}\right) \Longrightarrow\left[A^{T} \mid \overrightarrow{\mathbf{0}}\right] \xrightarrow{\text { Gauss-Jordan }}\left[\operatorname{RREF}\left(A^{T}\right) \mid \overrightarrow{\mathbf{0}}\right]$

- DIRECT SUMS OF SUBSPACES OF \mathbb{R}^{n} (DEFINITION): Let W_{1}, W_{2} be two subspaces of \mathbb{R}^{n}.

Then \mathbb{R}^{n} is the direct sum of $W_{1} \& W_{2}$, written $\mathbb{R}^{n}=W_{1} \oplus W_{2}$, if

$$
\mathbf{v} \in \mathbb{R}^{n} \text { can be uniquely written as } \mathbf{v}=\mathbf{w}_{1}+\mathbf{w}_{2} \text {, where } \mathbf{w}_{1} \in W_{1} \& \mathbf{w}_{2} \in W_{2} .
$$

i.e. each vector in \mathbb{R}^{n} can be uniquely written as a sum of a vector from W_{1} and a vector from W_{2}.

- PROPERTIES OF ORTHOGONAL COMPLEMENTS:

Let W be a subspace of Euclidean induced-norm inner product space $\left(\mathbb{R}^{n},\langle\cdot, \cdot\rangle_{2},\|\cdot\| \|_{2}\right)$. Then:
(i) W^{\perp} is also a subspace of \mathbb{R}^{n}
(ii) $W \cap W^{\perp}=\{\overrightarrow{\mathbf{0}}\}$
(iii) $\mathbb{R}^{n}=W \oplus W^{\perp}$
(iv) $\quad \operatorname{dim}\left(\mathbb{R}^{n}\right)=\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)$
(v) $\quad\left(W^{\perp}\right)^{\perp}=W$

- FUNDAMENTAL SUBSPACES OF A MATRIX: Let matrix $A \in \mathbb{R}^{m \times n}$ such that $\operatorname{rank}(A)=r$.

Then the fundamental subspaces of A are related as so:

(i)	$\operatorname{RowSp}(A)$	$=\operatorname{ColSp}\left(A^{T}\right)$	(iv)
(ii)	$\operatorname{dim} \operatorname{ColSp}(A)=\operatorname{dim} \operatorname{ColSp}\left(A^{T}\right)=r$		
(iii)	$\operatorname{ColSp}\left(A^{T}\right)^{\perp}$	$=\operatorname{NulSp}\left(A^{T}\right)$	(v) $\mathbb{R}^{m}=\operatorname{CulSp}(A)$

- PYTHAGOREAN THEOREM FOR ORTHOGONAL VECTORS (PTFOV):

Vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ are orthogonal $\Longleftrightarrow\|\mathbf{u}+\mathbf{v}\|_{2}^{2}=\|\mathbf{u}\|_{2}^{2}+\|\mathbf{v}\|_{2}^{2}$

- BEST APPROXIMATION THEOREM:

Let W be a subspace of \mathbb{R}^{n} and $\mathbf{v} \in \mathbb{R}^{n}$ s.t. $\mathbf{v} \notin W$. Then:

$$
\left\|\mathbf{v}-\operatorname{proj}_{W} \mathbf{v}\right\|_{2}<\|\mathbf{v}-\mathbf{u}\|_{2} \quad \forall \mathbf{u} \in S \text { s.t. } \mathbf{u} \neq \operatorname{proj}_{W} \mathbf{v}
$$

i.e. the projection of \mathbf{v} onto W is the "closest" vector in W to \mathbf{v} which is not in W.
$\operatorname{proj}_{W} \mathbf{v}$ is called the best approximation to \mathbf{v} in subspace W.

- THE LEAST-SQUARES PROBLEM \& SOLUTION (DEFINITION):

Let $A \in \mathbb{R}^{m \times n}$ such that $m>n$ and $\mathbf{b} \notin \operatorname{ColSp}(A)$ such that linear system $A \mathbf{x}=\mathbf{b}$ is inconsistent \& overdetermined.
Then the least-squares problem is to find $\mathbf{x} \in \mathbb{R}^{n}$ s.t. $\|\mathbf{b}-A \mathbf{x}\|_{2}^{2}$ is minimized: $\min _{\mathbf{x} \in \mathbb{R}^{n}}\|\mathbf{b}-A \mathbf{x}\|_{2}^{2}$
REMARK: Vector $(\mathbf{b}-A \mathbf{x})$ is called the residual of the linear system.
Vector $\mathbf{x}^{*} \in \mathbb{R}^{n}$ is a least-squares solution to $A \mathbf{x}=\mathbf{b}$ if: $\min _{\mathbf{x} \in \mathbb{R}^{n}}\|\mathbf{b}-A \mathbf{x}\|_{2}^{2}=\left\|\mathbf{b}-A \mathbf{x}^{*}\right\|_{2}^{2}$
i.e. $\left\|\mathbf{b}-A \mathbf{x}^{*}\right\|_{2}^{2}$ is the minimum square-norm of the residual.

- FULL-RANK LEAST-SQUARES PROCEDURE USING NORMAL EQUATIONS:

GIVEN: $m \times n(m \geq n)$ linear system $A \mathbf{x}=\mathbf{b}$, full column rank $A, \mathbf{b} \notin \operatorname{ColSp}(A)$.
TASK: Find Least-Squares Solution \mathbf{x}^{*} s.t. $\|\mathbf{b}-A \mathbf{x}\|_{2}^{2}$ is minimized.
(1) Form normal equations for $\mathbf{x}^{*}: A^{T} A \mathbf{x}^{*}=A^{T} \mathbf{b}$
(2) Solve normal equations for $\mathbf{x}^{*}: \quad\left[A^{T} A \mid A^{T} \mathbf{b}\right] \xrightarrow{\text { Gauss-Jordan }}\left[I \mid \mathbf{x}^{*}\right]$
(3) Minimize square-norm of Residual: $\min _{\mathbf{x} \in \mathbb{R}^{n}}\|\mathbf{b}-A \mathbf{x}\|_{2}^{2}=\left\|\mathbf{b}-A \mathbf{x}^{*}\right\|_{2}^{2}$
(4) Find Projection Matrix onto $\operatorname{ColSp}(A): \quad \bar{P}=A\left(A^{T} A\right)^{-1} A^{T}$
(5) Find Best Approximation $\mathbf{b}^{*} \in \operatorname{ColSp}(A)$ to $\mathbf{b}: \quad \mathbf{b}^{*}=\bar{P} \mathbf{b}=A \mathbf{x}^{*}$

- FULL-RANK LEAST-SQUARES PROCEDURE USING REDUCED $Q R$ FACTORIZATION:

GIVEN: $m \times n(m \geq n)$ linear system $A \mathbf{x}=\mathbf{b}$, full column rank $A, \mathbf{b} \notin \operatorname{ColSp}(A)$.
TASK: Find Least-Squares Solution \mathbf{x}^{*} s.t. $\|\mathbf{b}-A \mathbf{x}\|_{2}^{2}$ is minimized.
(1) Perform Reduced $Q R$ Factorization using CGS-EN: $A=\hat{Q} \hat{R}$ (Recall that with Reduced $Q R, \quad \hat{Q}$ is $m \times n$ and \hat{R} is $n \times n$.)
(2) Find Projection Matrix onto $\operatorname{ColSp}(A): \quad \bar{P}=\hat{Q} \hat{Q}^{T}$
(3) Find Best Approximation $\mathbf{b}^{*} \in \operatorname{ColSp}(A)$ to $\mathbf{b}: \quad \mathbf{b}^{*}=\bar{P} \mathbf{b}$
(4) Minimize square-norm of Residual: $\min _{\mathbf{x} \in \mathbb{R}^{n}}\|\mathbf{b}-A \mathbf{x}\|_{2}^{2}=\|\mathbf{b}-\bar{P} \mathbf{b}\|_{2}^{2}$
(5) Back-solve linear system $\hat{R} \mathbf{x}^{*}=\hat{Q}^{T} \mathbf{b}$ for \mathbf{x}^{*}.

FULL $Q R$, FULL-RANK LEAST-SQUARES, ORTHOGONAL MATRICES

- FULL $Q R$ FACTORIZATION VIA CLASSICAL GRAM-SCHMIDT w/ EARLY NORMING (CGS-EN):

GIVEN: Tall or square ($m \geq n$) full column rank matrix $A_{m \times n}$ with columns \mathbf{a}_{k}.
TASK: Factor $A=Q R$ where $Q_{m \times m}$ has orthonormal columns $\widehat{\mathbf{q}}_{k}$ and $R_{m \times n}$ is upper triangular.
(1) Perform Classical Gram-Schmidt w/ early normalization on the columns of $A,\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{n}\right\}$:

$$
\hat{Q}=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\widehat{\mathbf{q}}_{1} & \widehat{\mathbf{q}}_{2} & \cdots & \widehat{\mathbf{q}}_{n} \\
\mid & \mid & & \mid
\end{array}\right], \quad \hat{R}=\left[\begin{array}{ccccc}
r_{11} & r_{12} & r_{13} & \cdots & r_{1 n} \\
0 & r_{22} & r_{23} & \cdots & r_{2 n} \\
0 & 0 & r_{33} & \cdots & r_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & r_{n n}
\end{array}\right]
$$

(2) Produce a basis $\left\{\mathbf{a}_{n+1}, \mathbf{a}_{n+2}, \cdots, \mathbf{a}_{m}\right\}$ for orthogonal complement of column space of A :

$$
\left[A^{T} \mid \overrightarrow{\mathbf{0}}\right] \xrightarrow{\text { Gauss-Jordan }}\left[\operatorname{RREF}\left(A^{T}\right) \mid \overrightarrow{\mathbf{0}}\right]
$$

(3) Perform CGS-EN on the basis $\left\{\mathbf{a}_{n+1}, \mathbf{a}_{n+2}, \cdots, \mathbf{a}_{m}\right\}$, resulting in \hat{Q}_{r} matrix.
(4) Form Q by augmenting \hat{Q}_{r} to \hat{Q}, and form R by augmenting zero matrix below \hat{R} :

$$
Q_{m \times m}:=\left[\begin{array}{ll}
\hat{Q}_{m \times n} & \hat{Q}_{r}
\end{array}\right]=\left[\begin{array}{cccccc}
\mid & \mid & & \mid & \mid & \mid \\
\widehat{\mathbf{q}}_{1} & \widehat{\mathbf{q}}_{2} & \ldots & \widehat{\mathbf{q}}_{n} & \widehat{\mathbf{q}}_{n+1} & \ldots \\
\mid & \mid & & \mid & \mid & \\
\hline \mathbf{\mathbf { q }} & \mid
\end{array}\right], \quad R_{m \times n}:=\left[\begin{array}{c}
\hat{R}_{n \times n} \\
O
\end{array}\right]
$$

- FULL-RANK LEAST-SQUARES PROCEDURE USING FULL $Q R$ FACTORIZATION:

GIVEN: $m \times n(m \geq n)$ linear system $A \mathbf{x}=\mathbf{b}$, full column rank $A, \mathbf{b} \notin \operatorname{ColSp}(A)$.
TASK: Find Least-Squares Solution \mathbf{x}^{*} s.t. $\|\mathbf{b}-A \mathbf{x}\|_{2}^{2}$ is minimized.
(1) Perform Full $Q R$ Factorization using CGS-EN: $A=Q R$

$$
Q_{m \times m}:=\left[\begin{array}{ll}
\hat{Q}_{m \times n} & \hat{Q}_{r}
\end{array}\right], \quad R_{m \times n}:=\left[\begin{array}{c}
\hat{R}_{n \times n} \\
O
\end{array}\right]
$$

(2) Find Projection Matrix onto $\operatorname{ColSp}(A): \quad \bar{P}=\hat{Q} \hat{Q}^{T}$
(3) Find best Approximation $\mathbf{b}^{*} \in \operatorname{ColSp}(A)$ to $\mathbf{b}: \mathbf{b}^{*}=\bar{P} \mathbf{b}$
(4) Find Projection Matrix onto $\operatorname{ColSp}(A)^{\perp}: \quad \bar{P}_{r}=\hat{Q}_{r} \hat{Q}_{r}^{T}$
(5) Minimize square-norm of Residual: $\min _{\mathbf{x} \in \mathbb{R}^{n}}\|\mathbf{b}-A \mathbf{x}\|_{2}^{2}=\left\|\bar{P}_{r} \mathbf{b}\right\|_{2}^{2}$
(6) Back-solve linear system $\hat{R} \mathbf{x}^{*}=\hat{Q}^{T} \mathbf{b}$ for \mathbf{x}^{*}.

- ORTHOGONAL MATRICES (DEFINITION): A square matrix Q is orthogonal if its columns are orthonormal.
- ORTHOGONAL MATRICES (PROPERTIES): The following properties are all equivalent:
(a) Q is an orthogonal matrix
(d) $Q^{-1}=Q^{T}$
(b) The columns of Q are orthonormal
(e) Q^{T} is an orthogonal matrix
(c) $Q^{T} Q=Q Q^{T}=I$
(f) The rows of Q are orthonormal
- ORTHOGONAL MATRICES (DETERMINANTS):
(a) Q is orthogonal matrix $\Longrightarrow \operatorname{det}(Q)= \pm 1$.
(b) $\operatorname{det}(Q)= \pm 1 \Longrightarrow Q$ is orthogonal matrix
- ORTHOGONAL MATRICES (PRESERVATION): Consider Euclidean inner product space $\left(\mathbb{R}^{n},\langle\cdot, \cdot\rangle_{2}\right)$ with... \ldots inner product $\langle\mathbf{v}, \mathbf{w}\rangle_{2}:=\mathbf{v}^{T} \mathbf{w}$ and induced norm $\|\mathbf{x}\|_{2}:=\langle\mathbf{x}, \mathbf{x}\rangle_{2}$ and induced metric $d_{2}(\mathbf{v}, \mathbf{w}):=\|\mathbf{v}-\mathbf{w}\|_{2}$. Then:
(i) $\langle Q \mathbf{v}, Q \mathbf{w}\rangle_{2}=\langle\mathbf{v}, \mathbf{w}\rangle_{2}$,
(ii) $\|Q \mathbf{x}\|_{2}=\|\mathbf{x}\|_{2}$,
(iii) $d_{2}(Q \mathbf{v}, Q \mathbf{w})=d_{2}(\mathbf{v}, \mathbf{w})$

EX 5.4.1: Find the orthogonal complement of subspace $W=\operatorname{span}\left\{\left[\begin{array}{r}1 \\ -2 \\ 0\end{array}\right],\left[\begin{array}{r}-3 \\ 5 \\ 8\end{array}\right]\right\}$.

EX 5.4.2: Let vector $\mathbf{v}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and subspace $W=\operatorname{span}\left\{\left[\begin{array}{r}1 \\ -2 \\ 0\end{array}\right],\left[\begin{array}{l}6 \\ 3 \\ 2\end{array}\right]\right\} \equiv \operatorname{span}\left\{\mathbf{q}_{1}, \mathbf{q}_{2}\right\} . \quad$ Compute $\operatorname{proj}_{W} \mathbf{v}$.

EX 5.4.3: Given the inconsistent linear system $A \mathbf{x}=\mathbf{b}$, where $A=\left[\begin{array}{rr}1 & -2 \\ 1 & -1 \\ 1 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$.
(a) Find the least-squares solution \mathbf{x}^{*} via the normal equations.
(b) Find the minimum square-norm residual of the linear system: $\min _{\mathbf{x} \in \mathbb{R}^{2}}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2}$
(c) Find the projection matrix \bar{P} onto the column space of A.
(d) Find the best approximation $\mathbf{b}^{*} \in \operatorname{ColSp}(A)$ to the RHS vector \mathbf{b}.

EX 5.4.4: Given the inconsistent linear system $A \mathbf{x}=\mathbf{b}$, where $A=\left[\begin{array}{rr}1 & -2 \\ 1 & -1 \\ 1 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$.
(a) Perform the Reduced QR Factorization of A using Classical Gram-Schmidt with early normalization.
(b) Find the projection matrix \bar{P} onto the column space of A.
(c) Find the best approximation $\mathbf{b}^{*} \in \operatorname{ColSp}(A)$ to the RHS vector \mathbf{b}.
(d) Find the minimum square-norm residual of the linear system: $\min _{\mathbf{x} \in \mathbb{R}^{2}}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2}$
(e) Find the least-squares solution \mathbf{x}^{*} via the Reduced QR Factorization performed in part (a).

EX 5.4.5: Given the inconsistent linear system $A \mathbf{x}=\mathbf{b}$, where $A=\left[\begin{array}{rr}1 & -2 \\ 1 & -1 \\ 1 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$.
(a) Perform the Full QR Factorization of A using Classical Gram-Schmidt with early normalization.
(b) Find the projection matrix \bar{P} onto $\operatorname{ColSp}(A)$.
(c) Find the best approximation $\mathbf{b}^{*} \in \operatorname{ColSp}(A)$ to the RHS vector \mathbf{b}.
(d) Find the projection matrix \bar{P}_{r} onto $\operatorname{ColSp}(A)^{\perp}$.
(e) Find the minimum square-norm residual of the linear system: $\min _{\mathbf{x} \in \mathbb{R}^{2}}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2}$
(f) Find the least-squares solution \mathbf{x}^{*} via the Full QR Factorization performed in part (a).

EX 5.4.6: Perform the Full QR Factorization using Classical Gram-Schmidt with early normalization of $A=\left[\begin{array}{rrr}3 & 0 & 2 \\ -3 & 2 & -1 \\ 3 & -1 & 3 \\ 0 & -1 & 4 \\ 0 & 0 & 1\end{array}\right]$

[^0]
[^0]: (C)2015, 2021 Josh Engwer - Revised October 14, 2022

