EX 6.1.1: Let transformation $T: \mathbb{R} \rightarrow \mathbb{R}^{2}$ s.t. $T(t)=\left[\begin{array}{c}2 t \\ 0\end{array}\right] . \quad$ Show that $T$ is a linear transformation.
It's sufficient to show that the Superposition Principle (LT5) holds: $\quad[s, t \in \mathbb{R}$ and $\alpha, \beta \in \mathbb{R}]$

$$
T(\alpha s+\beta t)=\left[\begin{array}{c}
2(\alpha s+\beta t) \\
0
\end{array}\right]=\left[\begin{array}{c}
2 \alpha s+2 \beta t \\
0
\end{array}\right]=\left[\begin{array}{c}
2 \alpha s \\
0
\end{array}\right]+\left[\begin{array}{c}
2 \beta t \\
0
\end{array}\right]=\alpha\left[\begin{array}{c}
2 s \\
0
\end{array}\right]+\beta\left[\begin{array}{c}
2 t \\
0
\end{array}\right]=\alpha T(s)+\beta T(t)
$$

$\therefore$ Since $T(\alpha s+\beta t)=\alpha T(s)+\beta T(t), T$ is a linear transformation.
EX 6.1.2: Let transformation $T: \mathbb{R} \rightarrow \mathbb{R}^{2}$ s.t. $T(t)=\left[\begin{array}{c}2 t \\ 1\end{array}\right]$. Show that $T$ is not a linear transformation.
It's sufficient to show that the "Zero Vector Property" (LT3) does not hold in general:

$$
T(\overrightarrow{\mathbf{0}})=T\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
2(0) \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \neq\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\overrightarrow{\mathbf{0}} \in \mathbb{R}^{2}
$$

$\therefore$ Since $T(\overrightarrow{\mathbf{0}}) \neq \overrightarrow{\mathbf{0}}, T$ is not a linear transformation.
EX 6.1.3: Let transformation $T: \mathbb{R} \rightarrow \mathbb{R}^{2}$ s.t. $T(t)=\left[\begin{array}{c}2 t+1 \\ t\end{array}\right]$. Show that $T$ is not a linear transformation.
It's sufficient to show that the "Zero Vector Property" (LT3) does not hold in general:

$$
T(\overrightarrow{\mathbf{0}})=T\left((0,0)^{T}\right)=(2(0)+1,(0))^{T}=(1,0)^{T} \neq(0,0)^{T}=\overrightarrow{\mathbf{0}} \in \mathbb{R}^{2}
$$

$\therefore$ Since $T(\overrightarrow{\mathbf{0}}) \neq \overrightarrow{\mathbf{0}}, T$ is not a linear transformation.
EX 6.1.4: Let transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ s.t. $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=3 x_{2}-x_{1}$. Show that $T$ is a linear transformation.
Since the rule for $T$ is complicated, show that the Axioms (LT1) \& (LT2) hold: $\quad\left[\mathbf{u}=\left(u_{1}, u_{2}\right)^{T}, \mathbf{v}=\left(v_{1}, v_{2}\right)^{T}\right.$ and $\left.\alpha \in \mathbb{R}\right]$

$$
\text { (LT1): } T(\mathbf{u}+\mathbf{v})=T\left(\left[\begin{array}{l}
u_{1}+v_{1} \\
u_{2}+v_{2}
\end{array}\right]\right)=3\left(u_{2}+v_{2}\right)-\left(u_{1}+v_{1}\right)=\left(3 u_{2}-u_{1}\right)+\left(3 v_{2}-v_{1}\right)=T(\mathbf{u})+T(\mathbf{v})
$$

(LT2): $T(\alpha \mathbf{v})=T\left(\left[\begin{array}{l}\alpha v_{1} \\ \alpha v_{2}\end{array}\right]\right)=3\left(\alpha v_{2}\right)-\left(\alpha v_{1}\right)=\alpha\left(3 v_{2}\right)-\alpha\left(v_{1}\right)=\alpha\left(3 v_{2}-v_{1}\right)=\alpha T(\mathbf{v})$
$\therefore$ Since $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ and $T(\alpha \mathbf{v})=\alpha T(\mathbf{v}), T$ is a linear transformation.
EX 6.1.5: Let transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ s.t. $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=x_{1}+4$. Show that $T$ is not a linear transformation.
It's sufficient to show that the "Zero Vector Property" (LT3) does not hold in general:

$$
T(\overrightarrow{\mathbf{0}})=T\left((0,0)^{T}\right)=(0)+4=4 \neq 0=\overrightarrow{\mathbf{0}} \in \mathbb{R}
$$

$\therefore$ Since $T(\overrightarrow{\mathbf{0}}) \neq \overrightarrow{\mathbf{0}}, T$ is not a linear transformation.
EX 6.1.6: Let transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ s.t. $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=x_{1}^{2}$. Show that $T$ is not a linear transformation.
Unfortunately, the "Zero Vector Property" (LT3) does indeed hold:

$$
T(\overrightarrow{\mathbf{0}})=T\left((0,0)^{T}\right)=(0)^{2}=0=\overrightarrow{\mathbf{0}} \in \mathbb{R} \Longrightarrow T(\overrightarrow{\mathbf{0}})=\overrightarrow{\mathbf{0}}
$$

Hence, it's easiest to show that the SM Axiom (LT2) does not hold for all $\alpha \in \mathbb{R}$ :

$$
T(\alpha \mathbf{v})=T\left(\left(\alpha v_{1}, \alpha v_{2}\right)^{T}\right)=\left(\alpha v_{1}\right)^{2}=\alpha^{2} v_{1}^{2} \neq \alpha v_{1}^{2}=\alpha T(\mathbf{v}) \text { for } \alpha \neq 1
$$

$\therefore$ Since $T(\alpha \mathbf{v}) \neq \alpha T(\mathbf{v})$ in general, $T$ is not a linear transformation.
EX 6.1.7: Let transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ s.t. $T(\mathbf{x})=\|\mathbf{x}\|$. Show that $T$ is not a linear transformation.
Alas, the "Zero Vector Property" does indeed hold: $\quad T(\overrightarrow{\mathbf{0}})=\left\|(0,0)^{T}\right\|=\sqrt{(0)^{2}+(0)^{2}}=0=\overrightarrow{\mathbf{0}} \in \mathbb{R} \Longrightarrow T(\overrightarrow{\mathbf{0}})=\overrightarrow{\mathbf{0}}$ Hence, it's easiest to show that the SM Axiom (LT2) does not hold for all $\alpha \in \mathbb{R}$ :

$$
T(\alpha \mathbf{v})=\|\alpha \mathbf{v}\|^{N M 3}|\alpha|\|\mathbf{v}\| \neq \alpha\|\mathbf{v}\|=\alpha T(\mathbf{v}) \text { for } \alpha<0
$$

$\therefore$ Since $T(\alpha \mathbf{v}) \neq \alpha T(\mathbf{v})$ in general, $T$ is not a linear transformation.

[^0]EX 6.1.8: Let transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ s.t. $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}-x_{2} \\ x_{1}\end{array}\right]$. Show that $T$ is a linear transformation.
It's sufficient to show that the Superposition Principle (LT5) holds: $\quad\left[\mathbf{u}=\left(u_{1}, u_{2}\right)^{T}\right.$ and $\mathbf{v}=\left(v_{1}, v_{2}\right)^{T}$ and $\left.\alpha, \beta \in \mathbb{R}\right]$

$$
\begin{aligned}
T(\alpha \mathbf{u}+\beta \mathbf{v}) & =T\left(\left[\begin{array}{l}
\alpha u_{1}+\beta v_{1} \\
\alpha u_{2}+\beta v_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
\left(\alpha u_{1}+\beta v_{1}\right)-\left(\alpha u_{2}+\beta v_{2}\right) \\
\left(\alpha u_{1}+\beta v_{1}\right)
\end{array}\right]=\left[\begin{array}{c}
\left(\alpha u_{1}-\alpha u_{2}\right)+\left(\beta v_{1}-\beta v_{2}\right) \\
\left(\alpha u_{1}\right)+\left(\beta v_{1}\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
\alpha u_{1}-\alpha u_{2} \\
\alpha u_{1}
\end{array}\right]+\left[\begin{array}{c}
\beta v_{1}-\beta v_{2} \\
\beta v_{1}
\end{array}\right]=\alpha\left[\begin{array}{c}
u_{1}-u_{2} \\
u_{1}
\end{array}\right]+\beta\left[\begin{array}{c}
v_{1}-v_{2} \\
v_{1}
\end{array}\right]=\alpha T(\mathbf{u})+\beta T(\mathbf{v})
\end{aligned}
$$

$\therefore$ Since $T(\alpha \mathbf{u}+\beta \mathbf{v})=\alpha T(\mathbf{u})+\beta T(\mathbf{v}), T$ is a linear transformation.
EX 6.1.9: Let transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ s.t. $T\left(\left[\begin{array}{c}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}-x_{2} \\ x_{1}-2\end{array}\right]$. Show that $T$ is not a linear transformation.
It's sufficient to show that the "Zero Vector Property" (LT3) does not hold in general:

$$
T(\overrightarrow{\mathbf{0}})=T\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
(0)-(0) \\
(0)-2
\end{array}\right]=\left[\begin{array}{r}
0 \\
-2
\end{array}\right] \neq\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\overrightarrow{\mathbf{0}} \in \mathbb{R}^{2}
$$

$\therefore$ Since $T(\overrightarrow{\mathbf{0}}) \neq \overrightarrow{\mathbf{0}}, T$ is not a linear transformation.
EX 6.1.10: Let transformation $T: \mathbb{R}^{3 \times 2} \rightarrow \mathbb{R}^{2 \times 3}$ s.t. $T(A)=A^{T}$. Show that $T$ is a linear transformation.
It's sufficient to show that the Superposition Principle (LT5) holds: $\quad\left[A, B \in \mathbb{R}^{3 \times 2}\right.$ and $\left.\alpha, \beta \in \mathbb{R}\right]$

$$
T(\alpha A+\beta B)=(\alpha A+\beta B)^{T} \stackrel{T 2}{=}(\alpha A)^{T}+(\beta B)^{T} \stackrel{T 3}{=} \alpha\left(A^{T}\right)+\beta\left(B^{T}\right)=\alpha T(A)+\beta T(B)
$$

$\therefore$ Since $T(\alpha A+\beta B)=\alpha T(A)+\beta T(B), T$ is a linear transformation.
EX 6.1.11: Let transformation $T: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}$ s.t. $T(A)=A X-X A$ where $X$ is an arbitrary $2 \times 2$ matrix.
Show that $T$ is a linear transformation.
Since the rule for $T$ is complicated, show that the Axioms (LT1) \& (LT2) hold: $\quad\left[A, B \in \mathbb{R}^{2 \times 2}\right.$ and $\left.\alpha \in \mathbb{R}\right]$
(LT1): $T(A+B)=(A+B) X-X(A+B) \stackrel{M 3 / M 4}{=} A X+B X-X A-X B=(A X-X A)+(B X-X B)=T(A)+T(B)$
(LT2): $T(\alpha A)=(\alpha A) X-X(\alpha A) \stackrel{M 2}{=} \alpha(A X)-\alpha(X A)=\alpha(A X-X A)=\alpha T(A)$
$\therefore \quad$ Since $T(A+B)=T(A)+T(B)$ and $T(\alpha A)=\alpha T(A), T$ is a linear transformation.
EX 6.1.12: Let transformation $T: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}$ s.t. $T(A)=A^{-1}$. Show that $T$ is not a linear transformation.
Since $O_{2 \times 2}$ is not invertible, $O_{2 \times 2} \notin \operatorname{CoDomain}(T) \Longrightarrow \quad$ "Zero Vector Property" (LT3) does not hold.
Alternatively, show that the SM Axiom (LT2) does not hold for all $\alpha \in \mathbb{R}$ :
(LT2): $T(\alpha A)=(\alpha A)^{-1} \stackrel{I 3}{=} \frac{1}{\alpha} A^{-1}=\frac{1}{\alpha} T(A) \neq \alpha T(A)$ when $\alpha \neq 1$
$\therefore$ Since $T(\alpha A) \neq \alpha T(A)$ in general, $T$ is not a linear transformation.
EX 6.1.13: Let transformation $T: P_{3} \rightarrow P_{5}$ s.t. $T(p)=x^{2} p(x)$. Show that $T$ is a linear transformation.
It's sufficient to show that the Superposition Principle (LT5) holds: $\quad\left[p, q \in P_{3}\right.$ and $\left.\alpha, \beta \in \mathbb{R}\right]$
$T(\alpha p+\beta q)=x^{2}[\alpha p(x)+\beta q(x)]=\alpha x^{2} p(x)+\beta x^{2} q(x)=\alpha\left[x^{2} p(x)\right]+\beta\left[x^{2} q(x)\right]=\alpha T(p)+\beta T(q)$
$\therefore$ Since $T(\alpha p+\beta q)=\alpha T(p)+\beta T(q), T$ is a linear transformation.
EX 6.1.14: Let transformation $T: P_{3} \rightarrow P_{1}$ s.t. $T(p)=p^{\prime \prime}(x)$. Show that $T$ is a linear transformation.
$T(\alpha p+\beta q)=[\alpha p(x)+\beta q(x)]^{\prime \prime} \stackrel{C A L C U L U S}{=}[\alpha p(x)]^{\prime \prime}+[\beta q(x)]^{\prime \prime C A L C U L U S} \stackrel{ }{=} \alpha p^{\prime \prime}(x)+\beta q^{\prime \prime}(x)=\alpha T(p)+\beta T(q)$
$\therefore$ Since $T(\alpha p+\beta q)=\alpha T(p)+\beta T(q), T$ is a linear transformation.
EX 6.1.15: Let transformation $T: P_{3} \rightarrow P_{3}$ s.t. $T(p)=x^{3}+p(x)$. Show that $T$ is not a linear transformation.
It's sufficient to show that the "Zero Vector Property" (LT3) does not hold in general:

$$
T(\overrightarrow{\mathbf{0}})=T(z(x))=T\left(0 x^{3}+0 x^{2}+0 x+0\right)=x^{3}+0=x^{3} \neq 0 x^{3}+0 x^{2}+0 x+0=\overrightarrow{\mathbf{0}} \in P_{3}
$$

$\therefore$ Since $T(\overrightarrow{\mathbf{0}}) \neq \overrightarrow{\mathbf{0}}, T$ is not a linear transformation.

EX 6.1.16: Let transformation $T: C[0,1] \rightarrow \mathbb{R}$ s.t. $T(f)=\int_{0}^{1} x f(x) d x$. Show that $T$ is a linear transformation. It's sufficient to show that the Superposition Principle (LT5) holds: $\quad[f, g \in C[0,1]$ and $\alpha, \beta \in \mathbb{R}]$

$$
\begin{aligned}
T(\alpha f+\beta g) & =\int_{0}^{1} x[\alpha f(x)+\beta g(x)] d x=\int_{0}^{1}[\alpha x f(x)+\beta x g(x)] d x=\int_{0}^{1} \alpha x f(x) d x+\int_{0}^{1} \beta x g(x) d x \\
& =\alpha \int_{0}^{1} x f(x) d x+\beta \int_{0}^{1} x g(x) d x=\alpha T(f)+\beta T(g)
\end{aligned}
$$

$\therefore$ Since $T(\alpha f+\beta g)=\alpha T(f)+\beta T(g), T$ is a linear transformation.
EX 6.1.17: Let transformation $T: C[0,1] \rightarrow \mathbb{R}$ s.t. $T(f)=\int_{0}^{1}[x+f(x)] d x$. Show that $T$ is not a linear transformation. It's sufficient to show that the "Zero Vector Property" (LT3) does not hold in general: $\quad[z(x)=0]$

$$
T(\overrightarrow{\mathbf{0}})=T(z(x))=\int_{0}^{1}[x+z(x)] d x=\int_{0}^{1}[x+(0)] d x=\int_{0}^{1} x d x=\left[\frac{1}{2} x^{2}\right]_{x=0}^{x=1} \stackrel{F T C}{=} \frac{1}{2}(1)^{2}-\frac{1}{2}(0)^{2}=\frac{1}{2} \neq 0=\overrightarrow{\mathbf{0}} \in \mathbb{R}
$$

$\therefore$ Since $T(\overrightarrow{\mathbf{0}}) \neq \overrightarrow{\mathbf{0}}, T$ is not a linear transformation.
EX 6.1.18: Let linear transformation $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ s.t. $L\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}-3 \\ 2\end{array}\right]$ and $L\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 5\end{array}\right]$.
(a) Compute $L\left(\left[\begin{array}{r}-4 \\ 8\end{array}\right]\right)$.

The key is to write vector $(-4,8)^{T}$ as a linear combination of the two given input vectors $(1,0)^{T}$ and $(0,1)^{T}$ and then use the Superposition Principle (LT5):

$$
\begin{aligned}
L\left(\left[\begin{array}{r}
-4 \\
8
\end{array}\right]\right) & =L\left((-4)\left[\begin{array}{l}
1 \\
0
\end{array}\right]+(8)\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \stackrel{L T T^{5}}{=}(-4) L\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+(8) L\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=(-4)\left[\begin{array}{r}
-3 \\
2
\end{array}\right]+(8)\left[\begin{array}{l}
1 \\
5
\end{array}\right] \\
& =\left[\begin{array}{c}
12 \\
-8
\end{array}\right]+\left[\begin{array}{c}
8 \\
40
\end{array}\right]=\left[\begin{array}{l}
20 \\
32
\end{array}\right]
\end{aligned}
$$

(b) Compute $L\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)$, where $x_{1}, x_{2} \in \mathbb{R}$.

$$
\begin{aligned}
L\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right) & =L\left(\left(x_{1}\right)\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left(x_{2}\right)\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \stackrel{L T^{5}}{=}\left(x_{1}\right) L\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+\left(x_{2}\right) L\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left(x_{1}\right)\left[\begin{array}{c}
-3 \\
2
\end{array}\right]+\left(x_{2}\right)\left[\begin{array}{l}
1 \\
5
\end{array}\right] \\
& =\left[\begin{array}{c}
-3 x_{1} \\
2 x_{1}
\end{array}\right]+\left[\begin{array}{c}
x_{2} \\
5 x_{2}
\end{array}\right]=\left[\begin{array}{c}
-3 x_{1}+x_{2} \\
2 x_{1}+5 x_{2}
\end{array}\right]
\end{aligned}
$$

EX 6.1.19: Let linear transformation $L: P_{1} \rightarrow P_{1}$ s.t. $L(1)=x+5$ and $L(x)=2-3 x$.
(a) Compute $L(4 x-3)$.

Write linear polynomial $4 x-3$ as a linear combination of the two given input linears 1 and $x$ and then use the Superposition Principle (LT5):

$$
L(4 x-3)=L[4(x)-3(1)] \stackrel{L T{ }^{5}}{=} 4 L(x)-3 L(1)=4(2-3 x)-3(x+5)=8-12 x-3 x-15=-15 x-7
$$

(b) Compute $L(a x+b)$, where $a, b \in \mathbb{R}$.

$$
L(a x+b)=L[a(x)+b(1)] \stackrel{L T{ }^{5}}{=} a L(x)+b L(1)=a(2-3 x)+b(x+5)=2 a-3 a x+b x+5 b=(b-3 a) x+(2 a+5 b)
$$


[^0]:    ©2015 Josh Engwer - Revised November 6, 2015

