LINEAR TRANSFORMATIONS [LARSON 6.1]

• COMMON VECTOR SPACES (REVIEW):

\mathbb{R}	\equiv	Set of all real numbers (scalars)		
\mathbb{R}^{2}	\equiv	Set of all ordered pairs (2-wide vectors)		
\mathbb{R}^{3}	\equiv	Set of all ordered triples (3-wide vectors)		
\mathbb{R}^{n}	\equiv	Set of all ordered <i>n</i> -tuples (<i>n</i> -wide vectors)		
$\mathbb{R}^{m\times n}$	\equiv	Set of all $m \times n$ matrices		
$\mathbb{R}^{n \times n}$	\equiv	Set of all $n \times n$ square matrices		
P_n	\equiv	Set of all polynomials of degree n or less		
C[a,b]	\equiv	Set of all continuous functions on $[a, b]$		
$C^1[a,b]$	\equiv	Set of all differentiable functions on $[a, b]$		
$C^2[a,b]$	\equiv	Set of all twice-differentiable fcns on $\left[a,b\right]$		
$C(\mathbb{R})$	≡	Set of all everywhere-continuous functions		
$C^1(\mathbb{R})$	≡	Set of all everywhere-differentiable functions		
$C^2(\mathbb{R})$	\equiv	Set of all everywhere-twice-differentiable fcns		
$C^{\infty}(\mathbb{R})$	≡	Set of all everywhere-infinitely-differentiable fcns $% \left({{{\left[{{{\left[{{\left[{{\left[{{\left[{{\left[{{\left[$		

• TRANSFORMATION (DEFINITION): A transformation T is a function between vector spaces V, W.

The **signature** of transformation *T* from vector spaces *V* into *W* is written: $T: V \to W$ *V* is the **domain** of *T* and *W* is the **codomain** of *T*. $T(\mathbf{v}) \in W$ is called the **image** of vector $\mathbf{v} \in V$. The set of all images of all vectors in *V* is the **range** of *T*: Range(T) := { $T(\mathbf{v}) : \mathbf{v} \in V$ } $\subseteq W$

• LINEAR TRANSFORMATION (DEFINITION): Let V, W be vector spaces and transformation $T: V \to W$.

T is a **linear transformation** if the following all hold $\forall \mathbf{u}, \mathbf{v} \in V$ and $\forall \alpha \in \mathbb{R}$:

(LT1)	$T(\mathbf{u} + \mathbf{v})$	=	$T(\mathbf{u}) + T(\mathbf{v})$	Preservation of Vector Addition
(LT2)	$T(\alpha \mathbf{v})$	=	$\alpha T(\mathbf{v})$	Preservation of Scalar Mult.

i.e. Linear transformations preserve vector addition & scalar multiplication.

<u>REMARK:</u> If a transformation is linear a priori, then the linear transformation will be denoted by L instead of T.

• LINEAR TRANSFORMATION (PROPERTIES): Let $L: V \to W$ be a linear transformation.

Then the following all hold $\forall \mathbf{u}, \mathbf{v} \in V$ and $\forall \alpha, \beta \in \mathbb{R}$:

(LT3)	$L(\vec{0})$	=	Ö	L maps $\vec{0} \in V$ to $\vec{0} \in W$
(LT4)	$L(\mathbf{u} - \mathbf{v})$	=	$L(\mathbf{u}) - T(\mathbf{v})$	Preservation of Vector Subtraction
(LT5)	$L(\alpha \mathbf{u} + \beta \mathbf{v})$	=	$\alpha L(\mathbf{u}) + \beta L(\mathbf{v})$	Superposition Principle

Establishing (LT5) is sufficient when showing T is a linear transformation.

(LT3) may be helpful when showing T is <u>not</u> a linear transformation.

• **<u>TWO SPECIAL LINEAR TRANSFORMATIONS</u>**: Let $L: V \to W$ be a linear transformation. Then:

(ZT) *L* is the **zero transformation** if $L(\mathbf{v}) = \vec{\mathbf{0}} \quad \forall \mathbf{v} \in V$

(IT) L is the **identity transformation** if $L(\mathbf{v}) = \mathbf{v} \quad \forall \mathbf{v} \in V$

• LINEAR TRANSFORMATION GIVEN BY A MATRIX: Let A be an $m \times n$ matrix.

Then $T(\mathbf{v}) = A\mathbf{v}$ is a linear transformation from \mathbb{R}^n into \mathbb{R}^m : $T: \mathbb{R}^n \to \mathbb{R}^m$

©2015 Josh Engwer – Revised October 23, 2015

EXAMPLES OF TRANSFORMATIONS [LARSON 6.1]

SIGNATURE	EXAMPLE	SPECIAL NAME
$T:\mathbb{R}\to\mathbb{R}$	$T(x) = x^2 + 1$	(Scalar) Function
$T: \mathbb{R} \to \mathbb{R}^n$	$T(t) = \left[\begin{array}{c} 1-t\\ \sqrt{t} \end{array} \right]$	Vector Function
$T:\mathbb{R}^m\to\mathbb{R}$	$T\left(\mathbf{x} ight) = 2\mathbf{x}^{T}\mathbf{x}$	Scalar Field
$T: \mathbb{R}^m \to \mathbb{R}$	$T\left(\left[\begin{array}{c}x_1\\x_2\end{array}\right]\right) = x_1^3 - x_1 x_2$	Scalar Field
$T: \mathbb{R}^m \to \mathbb{R}^n$	$T\left(\mathbf{x}\right) = A\mathbf{x}$ $(A \in \mathbb{R}^{3 \times 4})$	Vector Field
$T: \mathbb{R}^m \to \mathbb{R}^n$	$T\left(\left[\begin{array}{c}x_1\\x_2\\x_3\end{array}\right]\right) = \left[\begin{array}{c}\sin x_3\\\ln x_2 - x_1^2\end{array}\right]$	Vector Field
$T: \mathbb{R} \to \mathbb{R}^{m \times n}$	$T(t) = t^2 I$ (<i>I</i> is 3 × 3 identity matrix)	Matrix Function
$T: \mathbb{R} \to \mathbb{R}^{m \times n}$	$T(t) = \begin{bmatrix} 8 & (1-t^4) \\ \cos(\pi t) & 5e^t \end{bmatrix}$	Matrix Function
$T: \mathbb{R}^{n \times n} \to \mathbb{R}$	$T(A) = \det(A) + 7$????
$T: \mathbb{R}^{m \times n} \to \mathbb{R}$	$T\left(\left[\begin{array}{rrr}a_{11}&a_{12}\\a_{21}&a_{22}\\a_{31}&a_{32}\end{array}\right]\right) = a_{11}a_{21} - a_{32}^2$????
$T: \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$	T(A) = I - 3A	????
$T: \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$	$T\left(\left[\begin{array}{rrr}a_{11}&a_{12}\\a_{21}&a_{22}\\a_{31}&a_{32}\end{array}\right]\right) = \left[\begin{array}{rrr}a_{23}^2&0\\a_{13}a_{11}&a_{13}\\\frac{3}{\sqrt[3]{a_{11}}}&6a_{22}\end{array}\right]$????
$T: P_n \to \mathbb{R}$	T(p) = 3p(1) - 2p(-1) + 4	????
$T:P_2\to\mathbb{R}$	$T(ax^{2} + bx + c) = 3a - b^{4} + c^{2/3}$????
$T: P_{n+2} \to P_n$	T(p) = p''(x)	????
$T: P_n \to P_{n+1}$	$T(p) = \int p(x) dx$????
$T: C^2(\mathbb{R}) \to \mathbb{R}$	T(f) = 3f''(2) - 2f'(1) + f(0)	Functional
$T:C[0,1]\to \mathbb{R}$	$T(f) = \int_0^1 x^2 f(x) dx$	Functional

©2015 Josh Engwer – Revised October 23, 2015

<u>EX 6.1.1</u>: Let transformation $T : \mathbb{R} \to \mathbb{R}^2$ s.t. $T(t) = \begin{bmatrix} 2t \\ 0 \end{bmatrix}$. Show that T is a linear transformation.

<u>EX 6.1.2</u> Let transformation $T : \mathbb{R} \to \mathbb{R}^2$ s.t. $T(t) = \begin{bmatrix} 2t \\ 1 \end{bmatrix}$. Show that T is <u>not</u> a linear transformation.

EX 6.1.3 Let transformation
$$T : \mathbb{R} \to \mathbb{R}^2$$
 s.t. $T(t) = \begin{bmatrix} 2t+1 \\ t \end{bmatrix}$. Show that T is not a linear transformation.

EX 6.1.4: Let transformation
$$T : \mathbb{R}^2 \to \mathbb{R}$$
 s.t. $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = 3x_2 - x_1$. Show that T is a linear transformation.

EX 6.1.5: Let transformation
$$T: \mathbb{R}^2 \to \mathbb{R}$$
 s.t. $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = x_1 + 4$. Show that T is not a linear transformation.

EX 6.1.6: Let transformation
$$T : \mathbb{R}^2 \to \mathbb{R}$$
 s.t. $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = x_1^2$. Show that T is not a linear transformation.

<u>EX 6.1.7</u>: Let transformation $T : \mathbb{R}^2 \to \mathbb{R}$ s.t. $T(\mathbf{x}) = ||\mathbf{x}||$. Show that T is <u>not</u> a linear transformation.

<u>EX 6.1.8</u>: Let transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ s.t. $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - x_2 \\ x_1 \end{bmatrix}$. Show that $T \ \underline{is}$ a linear transformation.

<u>EX 6.1.9</u>: Let transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ s.t. $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - x_2 \\ x_1 - 2 \end{bmatrix}$. Show that T is <u>not</u> a linear transformation.

<u>EX 6.1.10</u> Let transformation $T : \mathbb{R}^{3 \times 2} \to \mathbb{R}^{2 \times 3}$ s.t. $T(A) = A^T$. Show that T is a linear transformation.

Let transformation $T: \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}$ s.t. T(A) = AX - XA where X is an arbitrary 2×2 matrix. EX 6.1.11: Show that T is a linear transformation.

EX 6.1.12: Let transformation $T: \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}$ s.t. $T(A) = A^{-1}$. Show that T is not a linear transformation.

<u>EX 6.1.13</u>: Let transformation $T: P_3 \to P_5$ s.t. $T(p) = x^2 p(x)$. Show that T is a linear transformation.

<u>EX 6.1.14</u>: Let transformation $T: P_3 \to P_1$ s.t. T(p) = p''(x). Show that T is a linear transformation.

<u>EX 6.1.15</u>: Let transformation $T: P_3 \to P_3$ s.t. $T(p) = x^3 + p(x)$. Show that T is <u>not</u> a linear transformation.

©2015 Josh Engwer - Revised October 23, 2015

<u>EX 6.1.16</u>: Let transformation $T: C[0,1] \to \mathbb{R}$ s.t. $T(f) = \int_0^1 x f(x) \, dx$. Show that T is a linear transformation.

<u>EX 6.1.17</u>: Let transformation $T: C[0,1] \to \mathbb{R}$ s.t. $T(f) = \int_0^1 [x + f(x)] dx$. Show that T is <u>not</u> a linear transformation.

EX 6.1.18: Let linear transformation
$$L : \mathbb{R}^2 \to \mathbb{R}^2$$
 s.t. $L\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$ and $L\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$.
(a) Compute $L\left(\begin{bmatrix} -4 \\ 8 \end{bmatrix} \right)$.

(b) Compute
$$L\left(\left[\begin{array}{c} x_1\\ x_2\end{array}\right]\right)$$
, where $x_1, x_2 \in \mathbb{R}$.

EX 6.1.19: Let linear transformation $L: P_1 \to P_1$ s.t. L(1) = x + 5 and L(x) = 2 - 3x. (a) Compute L(4x - 3).

(b) Compute L(ax + b), where $a, b \in \mathbb{R}$.