- COMMON VECTOR SPACES (REVIEW):

$$
\begin{aligned}
\mathbb{R} & \equiv \text { Set of all real numbers (scalars) } \\
\mathbb{R}^{2} & \equiv \text { Set of all ordered pairs (2-wide vectors) } \\
\mathbb{R}^{3} & \equiv \text { Set of all ordered triples (3-wide vectors) } \\
\mathbb{R}^{n} & \equiv \text { Set of all ordered } n \text {-tuples (} n \text {-wide vectors) } \\
\mathbb{R}^{m \times n} & \equiv \text { Set of all } m \times n \text { matrices } \\
\mathbb{R}^{n \times n} & \equiv \text { Set of all } n \times n \text { square matrices } \\
P_{n} & \equiv \text { Set of all polynomials of degree } n \text { or less } \\
C[a, b] & \equiv \text { Set of all continuous functions on }[a, b] \\
C^{1}[a, b] & \equiv \text { Set of all differentiable functions on }[a, b] \\
C^{2}[a, b] & \equiv \text { Set of all twice-differentiable fcns on }[a, b] \\
C(\mathbb{R}) & \equiv \text { Set of all everywhere-continuous functions } \\
C^{1}(\mathbb{R}) & \equiv \text { Set of all everywhere-differentiable functions } \\
C^{2}(\mathbb{R}) & \equiv \text { Set of all everywhere-twice-differentiable fcns } \\
C^{\infty}(\mathbb{R}) & \equiv \text { Set of all everywhere-infinitely-differentiable fcns }
\end{aligned}
$$

- TRANSFORMATION (DEFINITION): A transformation T is a function between vector spaces V, W.

The signature of transformation T from vector spaces V into W is written: $\quad T: V \rightarrow W$
V is the domain of T and W is the codomain of $T . T(\mathbf{v}) \in W$ is called the image of vector $\mathbf{v} \in V$.
The set of all images of all vectors in V is the range of $T: \quad \operatorname{Range}(T):=\{T(\mathbf{v}): \mathbf{v} \in V\} \subseteq W$

- LINEAR TRANSFORMATION (DEFINITION): Let V, W be vector spaces and transformation $T: V \rightarrow W$.
T is a linear transformation if the following all hold $\forall \mathbf{u}, \mathbf{v} \in V$ and $\forall \alpha \in \mathbb{R}$:

(LT1)	$T(\mathbf{u}+\mathbf{v})$	$=T(\mathbf{u})+T(\mathbf{v})$	
(LT2)	$T(\alpha \mathbf{v})$	$=$	$\alpha T(\mathbf{v})$

i.e. Linear transformations preserve vector addition \& scalar multiplication.

REMARK: If a transformation is linear a priori, then the linear transformation will be denoted by L instead of T.

- LINEAR TRANSFORMATION (PROPERTIES): Let $L: V \rightarrow W$ be a linear transformation.

Then the following all hold $\forall \mathbf{u}, \mathbf{v} \in V$ and $\forall \alpha, \beta \in \mathbb{R}$:

(LT3)	$L(\overrightarrow{\mathbf{0}})$	$=$	$\overrightarrow{\mathbf{0}}$	L maps $\overrightarrow{\mathbf{0}} \in V$ to $\overrightarrow{\mathbf{0}} \in W$
(LT4)	$L(\mathbf{u}-\mathbf{v})$	$=$	$L(\mathbf{u})-T(\mathbf{v})$	Preservation of Vector Subtraction
(LT5)	$L(\alpha \mathbf{u}+\beta \mathbf{v})$	$=$	$\alpha L(\mathbf{u})+\beta L(\mathbf{v})$	Superposition Principle

Establishing (LT5) is sufficient when showing T is a linear transformation.
(LT3) may be helpful when showing T is not a linear transformation.

- TWO SPECIAL LINEAR TRANSFORMATIONS: Let $L: V \rightarrow W$ be a linear transformation. Then:

$$
\begin{array}{cccccc}
\text { (ZT) } & L \text { is the } & \text { zero transformation } & \text { if } & L(\mathbf{v})=\overrightarrow{\mathbf{0}} & \forall \mathbf{v} \in V \\
\text { (IT) } & L \text { is the } & \text { identity transformation } & \text { if } & L(\mathbf{v})=\mathbf{v} & \forall \mathbf{v} \in V
\end{array}
$$

- LINEAR TRANSFORMATION GIVEN BY A MATRIX: Let A be an $m \times n$ matrix.

Then $T(\mathbf{v})=A \mathbf{v}$ is a linear transformation from \mathbb{R}^{n} into $\mathbb{R}^{m}: \quad T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

EXAMPLES OF TRANSFORMATIONS [LARSON 6.1]

SIGNATURE	EXAMPLE	SPECIAL NAME
$T: \mathbb{R} \rightarrow \mathbb{R}$	$T(x)=x^{2}+1$	(Scalar) Function
	$T(t)=\left[\begin{array}{c} 1-t \\ \sqrt{t} \end{array}\right]$	Vector Function
$T: \mathbb{R}^{m} \rightarrow \mathbb{R}$	$T(\mathbf{x})=2 \mathbf{x}^{T} \mathbf{x}$	Scalar Field
$T: \mathbb{R}^{m} \rightarrow \mathbb{R}$	$T\left(\left[\begin{array}{l} x_{1} \\ x_{2} \end{array}\right]\right)=x_{1}^{3}-x_{1} x_{2}$	Scalar Field
$T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$	$T(\mathbf{x})=A \mathbf{x} \quad\left(A \in \mathbb{R}^{3 \times 4}\right)$	Vector Field
	$T\left(\left[\begin{array}{l} x_{1} \\ x_{2} \\ x_{3} \end{array}\right]\right)=\left[\begin{array}{c} \sin x_{3} \\ \ln x_{2}-x_{1}^{2} \end{array}\right]$	Vector Field
$T: \mathbb{R} \rightarrow \mathbb{R}^{m \times n}$	$T(t)=t^{2} I \quad(I$ is 3×3 identity matrix $)$	Matrix Function
	$T(t)=\left[\begin{array}{cc} 8 & \left(1-t^{4}\right) \\ \cos (\pi t) & 5 e^{t} \end{array}\right]$	Matrix Function
$T: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$	$T(A)=\operatorname{det}(A)+7$????
$T: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$	$T\left(\left[\begin{array}{ll} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{array}\right]\right)=a_{11} a_{21}-a_{32}^{2}$????
$T: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{m \times n}$	$T(A)=I-3 A$????
$T: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{m \times n}$	$T\left(\left[\begin{array}{ll} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{array}\right]\right)=\left[\begin{array}{cc} a_{23}^{2} & 0 \\ a_{13} a_{11} & a_{13} \\ \sqrt[3]{a_{11}} & 6 a_{22} \end{array}\right]$????
$T: P_{n} \rightarrow \mathbb{R}$	$T(p)=3 p(1)-2 p(-1)+4$????
$T: P_{2} \rightarrow \mathbb{R}$	$T\left(a x^{2}+b x+c\right)=3 a-b^{4}+c^{2 / 3}$????
$T: P_{n+2} \rightarrow P_{n}$	$T(p)=p^{\prime \prime}(x)$????
$T: P_{n} \rightarrow P_{n+1}$	$T(p)=\int p(x) d x$????
$T: C^{2}(\mathbb{R}) \rightarrow \mathbb{R}$	$T(f)=3 f^{\prime \prime}(2)-2 f^{\prime}(1)+f(0)$	Functional
$T: C[0,1] \rightarrow \mathbb{R}$	$T(f)=\int_{0}^{1} x^{2} f(x) d x$	Functional

EX 6.1.1: Let transformation $T: \mathbb{R} \rightarrow \mathbb{R}^{2}$ s.t. $T(t)=\left[\begin{array}{c}2 t \\ 0\end{array}\right]$. Show that T is a linear transformation.

EX 6.1.2: Let transformation $T: \mathbb{R} \rightarrow \mathbb{R}^{2}$ s.t. $T(t)=\left[\begin{array}{c}2 t \\ 1\end{array}\right]$. Show that T is not a linear transformation.

EX 6.1.3: Let transformation $T: \mathbb{R} \rightarrow \mathbb{R}^{2}$ s.t. $T(t)=\left[\begin{array}{c}2 t+1 \\ t\end{array}\right]$. Show that T is not a linear transformation.

EX 6.1.4: Let transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ s.t. $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=3 x_{2}-x_{1}$. Show that T is a linear transformation.

EX 6.1.5: Let transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ s.t. $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=x_{1}+4$. Show that T is not a linear transformation.

EX 6.1.6: Let transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ s.t. $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=x_{1}^{2}$. Show that T is not a linear transformation.

EX 6.1.7: Let transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ s.t. $T(\mathbf{x})=\|\mathbf{x}\|$. Show that T is not a linear transformation.

EX 6.1.8: Let transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ s.t. $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}-x_{2} \\ x_{1}\end{array}\right]$. Show that T is a linear transformation.

EX 6.1.9: Let transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ s.t. $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}-x_{2} \\ x_{1}-2\end{array}\right]$. Show that T is not a linear transformation.

EX 6.1.10: Let transformation $T: \mathbb{R}^{3 \times 2} \rightarrow \mathbb{R}^{2 \times 3}$ s.t. $T(A)=A^{T}$. Show that T is a linear transformation.

EX 6.1.11: Let transformation $T: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}$ s.t. $T(A)=A X-X A$ where X is an arbitrary 2×2 matrix.
Show that T is a linear transformation.

EX 6.1.12: Let transformation $T: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}$ s.t. $T(A)=A^{-1}$. Show that T is not a linear transformation.

EX 6.1.13: Let transformation $T: P_{3} \rightarrow P_{5}$ s.t. $T(p)=x^{2} p(x)$. Show that T is a linear transformation.

EX 6.1.14: Let transformation $T: P_{3} \rightarrow P_{1}$ s.t. $T(p)=p^{\prime \prime}(x)$. Show that T is a linear transformation.

EX 6.1.15: Let transformation $T: P_{3} \rightarrow P_{3}$ s.t. $T(p)=x^{3}+p(x)$. Show that T is not a linear transformation.

EX 6.1.16: Let transformation $T: C[0,1] \rightarrow \mathbb{R}$ s.t. $T(f)=\int_{0}^{1} x f(x) d x$. Show that T is a linear transformation.

EX 6.1.17: Let transformation $T: C[0,1] \rightarrow \mathbb{R}$ s.t. $T(f)=\int_{0}^{1}[x+f(x)] d x$. Show that T is not a linear transformation.

EX 6.1.18: Let linear transformation $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ s.t. $L\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}-3 \\ 2\end{array}\right]$ and $L\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 5\end{array}\right]$.
(a) Compute $L\left(\left[\begin{array}{r}-4 \\ 8\end{array}\right]\right)$.
(b) Compute $L\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)$, where $x_{1}, x_{2} \in \mathbb{R}$.

EX 6.1.19: Let linear transformation $L: P_{1} \rightarrow P_{1}$ s.t. $L(1)=x+5$ and $L(x)=2-3 x$.
(a) Compute $L(4 x-3)$.
(b) Compute $L(a x+b)$, where $a, b \in \mathbb{R}$.

