EX 6.2.2: Let linear transformation $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ s.t. $L(\mathbf{x})=A \mathbf{x}$, where $A=\left[\begin{array}{lll}1 & 3 & 3 \\ 3 & 2 & 3\end{array}\right]$.
(a) Find the kernel of $L, \operatorname{ker}(L)$.

Realize that $\operatorname{ker}(L)=\operatorname{NulSp}(A)$, so find the null space of matrix A :
$[A \mid \overrightarrow{\mathbf{0}}]=\left[\begin{array}{lll|l}\hline 1 & 3 & 3 & 0 \\ 3 & 2 & 3 & 0\end{array}\right] \xrightarrow{(-3) R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{ccc|c}\hline 1 & 3 & 3 & 0 \\ 0 & -7 & -6 & 0\end{array}\right] \xrightarrow{\left(-\frac{1}{7}\right) R_{2} \rightarrow R_{2}}\left[\begin{array}{ccc|c}\hline 1 & 3 & 3 & 0 \\ 0 & 1 & 6 / 7 & 0\end{array}\right]$ $\xrightarrow{(-3) R_{2}+R_{1} \rightarrow R_{1}}\left[\begin{array}{ccc|c}\hline 1 & 0 & 3 / 7 & 0 \\ 0 & 1 & 6 / 7 & 0\end{array}\right]=[\operatorname{RREF}(A) \mid \overrightarrow{\mathbf{0}}]$

Column 3 of $\operatorname{RREF}(A)$ has no pivot, so x_{3} is a free variable. Hence, let $x_{3}=7 t$
Interpreting the rows of $\operatorname{RREF}(A)$ yields: $\left\{\begin{array}{l}x_{1}+\frac{3}{7} x_{3}=0 \\ x_{2}+\frac{6}{7} x_{3}=0\end{array} \Longrightarrow\left\{\begin{array}{lll}x_{1}=-\frac{3}{7}(7 t) & =-3 t \\ x_{2}=-\frac{6}{7}(7 t) & =-6 t\end{array}\right.\right.$
$\therefore\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{r}-3 t \\ -6 t \\ 7 t\end{array}\right]=t\left[\begin{array}{r}-3 \\ -6 \\ 7\end{array}\right] \Longrightarrow \operatorname{ker}(L)=\operatorname{span}\left\{\left[\begin{array}{r}-3 \\ -6 \\ 7\end{array}\right]\right\}$
(b) Find the nullity of L, nullity (L).
$\operatorname{nullity}(L)=\operatorname{dim}[\operatorname{ker}(L)]=[\#$ non-pivot columns of $\operatorname{RREF}(A)]=1$
(c) Find the range of L, range (L).

$$
\operatorname{range}(L)=\operatorname{ColSp}(A)=\operatorname{span}\{\text { pivot columns of } A\}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
3
\end{array}\right],\left[\begin{array}{l}
3 \\
2
\end{array}\right]\right\}
$$

(d) Find the rank of $L, \operatorname{rank}(L)$.
$\operatorname{rank}(L)=\operatorname{dim}[\operatorname{range}(L)]=[\#$ pivot columns of $\operatorname{RREF}(A)]=2$
(e) Is L one-to-one? (Justify answer.)

No, since $\operatorname{ker}(L) \neq\{\overrightarrow{\boldsymbol{0}}\}$, meaning more than one vector in the domain gets mapped to the zero vector in the codomain.

No, since $\operatorname{nullity}(L)>0$, meaning more than one vector in the domain gets mapped to the zero vector in the codomain.
(f) Is L onto? (Justify answer.)

Yes, since $\operatorname{rank}(L)=2=\operatorname{dim}\left(\mathbb{R}^{2}\right)=\operatorname{dim}[\operatorname{codomain}(L)]$, meaning the range of L is the entire codomain of L.

EX 6.2.3: Let linear transformation $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ s.t. $L(\mathbf{x})=A \mathbf{x}$, where $A=\left[\begin{array}{rrr}1 & 3 & 3 \\ 3 & 2 & 3 \\ -3 & 3 & 2\end{array}\right]$.
(a) Find the kernel of $L, \operatorname{ker}(L)$.

Realize that $\operatorname{ker}(L)=\operatorname{NulSp}(A)$, so find the null space of matrix A :

$$
\begin{aligned}
& \xrightarrow{(-1) R_{2}+R_{3} \rightarrow R_{3}}\left[\begin{array}{rrr|r}
1 & 3 & 3 & 0 \\
0 & 84 & 72 & 0 \\
0 & 0 & 5 & 0
\end{array}\right] \xrightarrow[\left(\frac{1}{5}\right) R_{3} \rightarrow R_{3}]{\left(\frac{1}{12}\right) R_{2} \rightarrow R_{2}}\left[\begin{array}{lll|l}
1 & 3 & 3 & 0 \\
0 & 7 & 6 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \xrightarrow[(-3) R_{3}+R_{1} \rightarrow R_{1}]{(-6) R_{3}+R_{2} \rightarrow R_{2}}\left[\begin{array}{ccc|c}
1 & 3 & 0 & 0 \\
0 & 7 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \\
& \xrightarrow{\left(\frac{1}{7}\right) R_{2} \rightarrow R_{2}}\left[\begin{array}{ccc|c}
\boxed{1} & 3 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \boxed{1} & 0
\end{array}\right] \xrightarrow{(-3) R_{2}+R_{1} \rightarrow R_{1}}\left[\begin{array}{ccc|c}
\hline 1 & 0 & 0 & 0 \\
0 & \boxed{1} & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]=[\operatorname{RREF}(A) \mid \overrightarrow{\mathbf{0}}]
\end{aligned}
$$

Since every column of $\operatorname{RREF}(A)$ has a pivot, there are no free variables $\Longrightarrow x_{1}, x_{2}, x_{3}$ are all fixed variables
Interpreting the rows of $\operatorname{RREF}(A)$ yields: $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] \Longrightarrow \operatorname{ker}(L)=\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}=\operatorname{span}\{\overrightarrow{\mathbf{0}}\}=\{\overrightarrow{\mathbf{0}}\}$
(b) Find the nullity of L, nullity (L).
$\operatorname{nullity}(L)=\operatorname{dim}[\operatorname{ker}(L)]=[\#$ non-pivot columns of $\operatorname{RREF}(A)]=0$
(c) Find the range of L, range (L).
$\operatorname{range}(L)=\operatorname{ColSp}(A)=\operatorname{span}\{$ pivot columns of $A\}=\operatorname{span}\left\{\left[\begin{array}{r}1 \\ 3 \\ -3\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 3 \\ 2\end{array}\right]\right\}$
(d) Find the rank of $L, \operatorname{rank}(L)$.
$\operatorname{rank}(L)=\operatorname{dim}[\operatorname{range}(L)]=[\#$ pivot columns of $\operatorname{RREF}(A)]=3$
(e) Is L one-to-one? (Justify answer.)

Yes, since $\operatorname{ker}(L)=\{\overrightarrow{\boldsymbol{0}}\}$, meaning only the zero vector in the domain gets mapped to the zero vector in the codomain.

$$
\longrightarrow \mathrm{OR}
$$

Yes, since nullity $(L)=0$, meaning only the zero vector in the domain gets mapped to the zero vector in the codomain.
(f) Is L onto? (Justify answer.)

Yes, since $\operatorname{rank}(L)=3=\operatorname{dim}\left(\mathbb{R}^{3}\right)=\operatorname{dim}[\operatorname{codomain}(L)]$, meaning the range of L is the entire codomain of L.

