LINEAR TRANSFORMATIONS: STANDARD MATRIX I [LARSON 6.3]

- STANDARD BASES OF \mathbb{R}^{n} (REVIEW):

NOTATION: A standard basis is denoted by $\mathcal{E}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{k}\right\}$, where \mathbf{e}_{j} is the $j^{\text {th }}$ standard basis vector. With a standard basis, the coefficients in the linear combination are simply the entries of the vector:
$\star\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=x_{1} \underbrace{\left[\begin{array}{l}1 \\ 0\end{array}\right]}_{\mathbf{e}_{1}}+x_{2} \underbrace{\left[\begin{array}{l}0 \\ 1\end{array}\right]}_{\mathbf{e}_{2}}=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}$
$\star\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=x_{1} \underbrace{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]}_{\mathbf{e}_{1}}+x_{2} \underbrace{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]}_{\mathbf{e}_{2}}+x_{3} \underbrace{\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]}_{\mathbf{e}_{3}}=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+x_{3} \mathbf{e}_{3}$

- STANDARD MATRIX FOR A LINEAR TRANSFORMATION (DEFINITION):

Let linear transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ s.t. $L(\mathbf{x})=A \mathbf{x} \forall \mathbf{x} \in \mathbb{R}^{n}$, where A is $m \times n$ matrix.
Then A is called the standard matrix for linear transformation L.

- FINDING STANDARD MATRIX - EASY CASE:

GIVEN: Linear Transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ s.t. L is explicitly defined.
TASK: Find Standard Matrix $A \in \mathbb{R}^{m \times n}$ s.t. $L(\mathbf{x})=A \mathbf{x}$
(1) $A=\left[\begin{array}{cccc}\mid & \mid & & \mid \\ L\left(\mathbf{e}_{1}\right) & L\left(\mathbf{e}_{2}\right) & \cdots & L\left(\mathbf{e}_{n}\right) \\ \mid & \mid & & \mid\end{array}\right]$
i.e. The columns of A are the images of the standard basis vectors for \mathbb{R}^{n}.

- COMPOSITION OF LINEAR TRANSFORMATIONS:

Let linear transformation $L_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ s.t. $L_{1}(\mathbf{x})=A_{1} \mathbf{x}$.
Let linear transformation $L_{2}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ s.t. $L_{2}(\mathbf{x})=A_{2} \mathbf{x}$.
Then the composition $L_{2} \circ L_{1}$ is defined by $\left(L_{2} \circ L_{1}\right)(\mathbf{x}):=L_{2}\left[L_{1}(\mathbf{x})\right]$.
Moreover, the composition $L_{2} \circ L_{1}$ is a linear transformation and $\quad\left(L_{2} \circ L_{1}\right)(\mathbf{x})=\left(A_{2} A_{1}\right) \mathbf{x}$

- INVERSE LINEAR TRANSFORMATION (DEFINITION):

Let linear transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ have identical domain \& codomain.
Then linear transformation $L^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the inverse of L if

$$
\left(L^{-1} \circ L\right)(\mathbf{x})=\mathbf{x} \text { and }\left(L \circ L^{-1}\right)(\mathbf{x})=\mathbf{x} \quad \forall \mathbf{x} \in \mathbb{R}^{n}
$$

L is called invertible if its inverse L^{-1} exists.

- INVERSE LINEAR TRANSFORMATION IN TERMS OF STANDARD MATRIX:

Let linear transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ s.t. $L(\mathbf{x})=A \mathbf{x}$.
If L is invertible, then its inverse $L^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $\quad L^{-1}(\mathbf{x})=A^{-1} \mathbf{x}$

LINEAR TRANSFORMATIONS: STANDARD MATRIX II [LARSON 6.3]

- FINDING STANDARD MATRIX - HARD CASE:

GIVEN: Linear Transformation L s.t. images $L\left(\mathbf{b}_{1}\right), \ldots, L\left(\mathbf{b}_{n}\right)$ are provided.
where $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ is a non-standard ordered basis for \mathbb{R}^{n}.
TASK: Find Standard Matrix $A \in \mathbb{R}^{m \times n}$ s.t. $L(\mathbf{x})=A \mathbf{x}$
(1)

NOTE: Write non-standard basis vectors $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ as row vectors (not column vectors.)
NOTE: Write the images $L\left(\mathbf{b}_{1}\right), \ldots, L\left(\mathbf{b}_{n}\right)$ as transposes to avoid confusion.
(2) $A=\left[\begin{array}{ccc}\mid & & \mid \\ L\left(\mathbf{e}_{1}\right) & \cdots & L\left(\mathbf{e}_{n}\right) \\ \mid & & \mid\end{array}\right]$

- STANDARD BASES OF P_{n} (REVIEW):

NOTATION: A standard basis is denoted by $\mathcal{E}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{k}\right\}$, where \mathbf{e}_{j} is the $j^{\text {th }}$ standard basis vector.
With a standard basis, the coefficients in the linear combination are simply the entries of the vector:
$\star a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x_{3}=a_{0} \underbrace{(1)}_{\mathbf{e}_{1}}+a_{1} \underbrace{(x)}_{\mathbf{e}_{2}}+a_{2} \underbrace{\left(x^{2}\right)}_{\mathbf{e}_{3}}+a_{3} \underbrace{\left(x^{3}\right)}_{\mathbf{e}_{4}}=a_{0} \mathbf{e}_{1}+a_{1} \mathbf{e}_{2}+a_{2} \mathbf{e}_{3}+a_{3} \mathbf{e}_{4}$

- ISOMORPHISM (REVIEW):

Vector spaces $\mathbb{R}^{4}, \mathbb{R}^{2 \times 2}, P_{3}$ are all isomorphic to each other since there exists isomorphisms L_{1}, L_{2} as shown below:
Let $L_{1}: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{4}$ s.t. $L_{1}\left(\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]\right)=\left[\begin{array}{c}a_{11} \\ a_{12} \\ a_{21} \\ a_{22}\end{array}\right], \quad$ Let $L_{2}: P_{3} \rightarrow \mathbb{R}^{4}$ s.t. $L_{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right)=\left[\begin{array}{c}a_{0} \\ a_{1} \\ a_{2} \\ a_{3}\end{array}\right]$
NOTATION: $\quad P_{3} \simeq \mathbb{R}^{4}$ means P_{3} is isomorphic to \mathbb{R}^{4}

- FINDING STANDARD MATRIX FOR CALCULUS (DERIVATIVE/INTEGRAL) OF POLYNOMIALS:

GIVEN: Linear Transformation $L: P_{n} \rightarrow P_{m}$ s.t. L involves derivatives and/or integrals.
TASK: Find Standard Matrix A s.t. $L(\mathbf{x})=A \mathbf{x}$
(1) Compute images $L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), \ldots, L\left(\mathbf{e}_{n+1}\right)$.
(2) Produce the isomorphisms of these images in P_{m} to images in \mathbb{R}^{m+1} :

$$
\left[L\left(\mathbf{e}_{1}\right)\right]_{\mathcal{E}^{\prime}},\left[L\left(\mathbf{e}_{2}\right)\right]_{\mathcal{E}^{\prime}}, \ldots,\left[L\left(\mathbf{e}_{n+1}\right)\right]_{\mathcal{E}^{\prime}}
$$

(3) $A=\left[\begin{array}{cccc}\mid & \mid & & \mid \\ {\left[L\left(\mathbf{e}_{1}\right)\right]_{\mathcal{E}^{\prime}}} & {\left[L\left(\mathbf{e}_{2}\right)\right]_{\mathcal{E}^{\prime}}} & \cdots & {\left[L\left(\mathbf{e}_{n+1}\right)\right]_{\mathcal{E}^{\prime}}} \\ \mid & \mid & & \mid\end{array}\right]$
$\mathcal{E}=\left\{1, t, t^{2}, \ldots, t^{n}\right\} \equiv\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n+1}\right\}$ is the standard ordered basis for P_{n}.
$\mathcal{E}^{\prime}=\left\{1, t, t^{2}, \ldots, t^{m}\right\} \equiv\left\{\mathbf{e}_{1}^{\prime}, \mathbf{e}_{2}^{\prime}, \ldots, \mathbf{e}_{m+1}^{\prime}\right\}$ is the standard ordered basis for P_{m}.
IMPORTANT: Always write polynomials in ascending order: $3-t+5 t^{2}$

EX 6.3.1: Let linear transformations $L_{1}, L_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that:

$$
L_{1}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
3
\end{array}\right], L_{1}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{r}
-1 \\
1
\end{array}\right] \quad \text { and } \quad L_{2}\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
3 x_{1}+6 x_{2} \\
x_{1}+2 x_{2}
\end{array}\right] .
$$

(a) Find the standard matrices A_{1}, A_{2} such that $L_{1}(\mathbf{x})=A_{1} \mathbf{x} \quad$ and $\quad L_{2}(\mathbf{x})=A_{2} \mathbf{x}$.
(b) Find the compositions $L_{1} \circ L_{2}$ and $L_{2} \circ L_{1}$.
(c) Find the inverses L_{1}^{-1} and L_{2}^{-1}, or indicate that they do not exist.

EX 6.3.2: Find std matrix A for linear transformation $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ s.t. $L\left(\left[\begin{array}{l}1 \\ 4\end{array}\right]\right)=\left[\begin{array}{r}-3 \\ 14 \\ -2 \\ 6\end{array}\right], L\left(\left[\begin{array}{r}2 \\ -3\end{array}\right]\right)=\left[\begin{array}{r}16 \\ -5 \\ 7 \\ 12\end{array}\right]$

EX 6.3.3: Find standard matrix A for linear transformation $L: P_{2} \rightarrow P_{2}$ s.t. $L(p)=t^{2} p^{\prime \prime}(t)$.

EX 6.3.4: Find standard matrix A for linear transformation $L: P_{2} \rightarrow P_{3}$ s.t. $L(p)=\int p(t) d t$. (Do not include ' $+C^{\prime}$)

EX 6.3.5: Find standard matrix A for linear transformation $L: P_{2} \rightarrow \mathbb{R}$ s.t. $L(p)=\int_{0}^{1} p(t) d t$.

