LINEAR TRANSFORMATIONS: STANDARD MATRIX I [LARSON 6.3]

• STANDARD BASES OF \mathbb{R}^n (REVIEW):

-

-

-

<u>NOTATION</u>: A standard basis is denoted by $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_k\}$, where \mathbf{e}_j is the j^{th} standard basis vector.

With a standard basis, the coefficients in the linear combination are simply the entries of the vector:

$$\star \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{\mathbf{e}_1} + x_2 \underbrace{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}_{\mathbf{e}_2} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$$
$$\star \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \underbrace{\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}}_{\mathbf{e}_2} + x_3 \underbrace{\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}}_{\mathbf{e}_3} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + x_3 \mathbf{e}_3$$

• STANDARD MATRIX FOR A LINEAR TRANSFORMATION (DEFINITION):

Let linear transformation $L : \mathbb{R}^n \to \mathbb{R}^m$ s.t. $L(\mathbf{x}) = A\mathbf{x} \quad \forall \mathbf{x} \in \mathbb{R}^n$, where A is $m \times n$ matrix. Then A is called the **standard matrix** for linear transformation L.

• FINDING STANDARD MATRIX – EASY CASE:

<u>GIVEN</u>: Linear Transformation $L : \mathbb{R}^n \to \mathbb{R}^m$ s.t. L is explicitly defined.

<u>TASK:</u> Find Standard Matrix $A \in \mathbb{R}^{m \times n}$ s.t. $L(\mathbf{x}) = A\mathbf{x}$

(1)
$$A = \begin{bmatrix} | & | & | \\ L(\mathbf{e}_1) & L(\mathbf{e}_2) & \cdots & L(\mathbf{e}_n) \\ | & | & | \end{bmatrix}$$

i.e. The columns of A are the images of the standard basis vectors for \mathbb{R}^n .

• COMPOSITION OF LINEAR TRANSFORMATIONS:

Let linear transformation $L_1 : \mathbb{R}^n \to \mathbb{R}^m$ s.t. $L_1(\mathbf{x}) = A_1 \mathbf{x}$. Let linear transformation $L_2 : \mathbb{R}^m \to \mathbb{R}^p$ s.t. $L_2(\mathbf{x}) = A_2 \mathbf{x}$.

Then the **composition** $L_2 \circ L_1$ is defined by $(L_2 \circ L_1)(\mathbf{x}) := L_2[L_1(\mathbf{x})].$

Moreover, the composition $L_2 \circ L_1$ is a linear transformation and $(L_2 \circ L_1)(\mathbf{x}) = (A_2 A_1)\mathbf{x}$

• INVERSE LINEAR TRANSFORMATION (DEFINITION):

Let linear transformation $L:\mathbb{R}^n\to\mathbb{R}^n$ have identical domain & codomain.

Then linear transformation $L^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ is the **inverse** of L if

$$(L^{-1} \circ L)(\mathbf{x}) = \mathbf{x}$$
 and $(L \circ L^{-1})(\mathbf{x}) = \mathbf{x}$ $\forall \mathbf{x} \in \mathbb{R}^n$

L is called **invertible** if its inverse L^{-1} exists.

• INVERSE LINEAR TRANSFORMATION IN TERMS OF STANDARD MATRIX:

Let linear transformation $L : \mathbb{R}^n \to \mathbb{R}^n$ s.t. $L(\mathbf{x}) = A\mathbf{x}$.

If L is invertible, then its inverse $L^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ such that $L^{-1}(\mathbf{x}) = A^{-1}\mathbf{x}$

^{©2015} Josh Engwer – Revised November 13, 2015

LINEAR TRANSFORMATIONS: STANDARD MATRIX II [LARSON 6.3]

• FINDING STANDARD MATRIX – HARD CASE:

<u>GIVEN</u>: Linear Transformation L s.t. images $L(\mathbf{b}_1), \ldots, L(\mathbf{b}_n)$ are provided.

where $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ is a non-standard ordered basis for \mathbb{R}^n .

<u>TASK:</u> Find Standard Matrix $A \in \mathbb{R}^{m \times n}$ s.t. $L(\mathbf{x}) = A\mathbf{x}$

(1)
$$\begin{bmatrix} --- & \mathbf{b}_1 & --- & L(\mathbf{b}_1) \\ \vdots & \vdots & \vdots \\ --- & \mathbf{b}_n & --- & L(\mathbf{b}_n) \end{bmatrix} \xrightarrow{Gauss-Jordan} \begin{bmatrix} I & L(\mathbf{e}_1) \\ \vdots \\ L(\mathbf{e}_n) \end{bmatrix}$$

<u>NOTE:</u> Write non-standard basis vectors $\mathbf{b}_1, \ldots, \mathbf{b}_n$ as row vectors (not column vectors.) <u>NOTE:</u> Write the images $L(\mathbf{b}_1), \ldots, L(\mathbf{b}_n)$ as transposes to avoid confusion.

(2)
$$A = \begin{bmatrix} | & | \\ L(\mathbf{e}_1) & \cdots & L(\mathbf{e}_n) \\ | & | \end{bmatrix}$$

• STANDARD BASES OF P_n (REVIEW):

<u>NOTATION</u>: A standard basis is denoted by $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_k\}$, where \mathbf{e}_j is the j^{th} standard basis vector. With a standard basis, the coefficients in the linear combination are simply the entries of the vector:

$$\star \ a_0 + a_1 x + a_2 x^2 + a_3 x_3 = a_0 \underbrace{(1)}_{\mathbf{e}_1} + a_1 \underbrace{(x)}_{\mathbf{e}_2} + a_2 \underbrace{(x^2)}_{\mathbf{e}_3} + a_3 \underbrace{(x^3)}_{\mathbf{e}_4} = a_0 \mathbf{e}_1 + a_1 \mathbf{e}_2 + a_2 \mathbf{e}_3 + a_3 \mathbf{e}_4$$

• ISOMORPHISM (REVIEW):

Vector spaces \mathbb{R}^4 , $\mathbb{R}^{2\times 2}$, P_3 are all isomorphic to each other since there exists isomorphisms L_1, L_2 as shown below:

Let
$$L_1: \mathbb{R}^{2 \times 2} \to \mathbb{R}^4$$
 s.t. $L_1\left(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \right) = \begin{bmatrix} a_{11} \\ a_{12} \\ a_{21} \\ a_{22} \end{bmatrix}$, Let $L_2: P_3 \to \mathbb{R}^4$ s.t. $L_2\left(a_0 + a_1x + a_2x^2 + a_3x^3\right) = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}$

<u>NOTATION:</u> $P_3 \simeq \mathbb{R}^4$ means P_3 is isomorphic to \mathbb{R}^4

• FINDING STANDARD MATRIX FOR CALCULUS (DERIVATIVE/INTEGRAL) OF POLYNOMIALS:

<u>GIVEN</u>: Linear Transformation $L: P_n \to P_m$ s.t. L involves derivatives and/or integrals.

- <u>TASK:</u> Find Standard Matrix A s.t. $L(\mathbf{x}) = A\mathbf{x}$
- (1) Compute images $L(\mathbf{e}_1), L(\mathbf{e}_2), \ldots, L(\mathbf{e}_{n+1})$.
- (2) Produce the isomorphisms of these images in P_m to images in \mathbb{R}^{m+1} :

$$[L(\mathbf{e}_1)]_{\mathcal{E}'}, [L(\mathbf{e}_2)]_{\mathcal{E}'}, \dots, [L(\mathbf{e}_{n+1})]_{\mathcal{E}'}$$

(3) $A = \begin{bmatrix} | & | & | \\ [L(\mathbf{e}_1)]_{\mathcal{E}'} & [L(\mathbf{e}_2)]_{\mathcal{E}'} & \cdots & [L(\mathbf{e}_{n+1})]_{\mathcal{E}'} \\ | & | & | \end{bmatrix}$ $\mathcal{E} = \{1, t, t^2, \dots, t^n\} \equiv \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_{n+1}\} \text{ is the standard ordered basis for } P_n.$ $\mathcal{E}' = \{1, t, t^2, \dots, t^m\} \equiv \{\mathbf{e}'_1, \mathbf{e}'_2, \dots, \mathbf{e}'_{m+1}\} \text{ is the standard ordered basis for } P_m.$

<u>IMPORTANT</u>: Always write polynomials in ascending order: $3 - t + 5t^2$

^{©2015} Josh Engwer - Revised November 13, 2015

<u>EX 6.3.1</u>: Let linear transformations $L_1, L_2 : \mathbb{R}^2 \to \mathbb{R}^2$ such that:

$$L_1\left(\left[\begin{array}{c}1\\0\end{array}\right]\right) = \left[\begin{array}{c}2\\3\end{array}\right], \ L_1\left(\left[\begin{array}{c}0\\1\end{array}\right]\right) = \left[\begin{array}{c}-1\\1\end{array}\right] \qquad \text{and} \qquad L_2\left(\left[\begin{array}{c}x_1\\x_2\end{array}\right]\right) = \left[\begin{array}{c}3x_1 + 6x_2\\x_1 + 2x_2\end{array}\right].$$

(a) Find the standard matrices A_1, A_2 such that $L_1(\mathbf{x}) = A_1\mathbf{x}$ and $L_2(\mathbf{x}) = A_2\mathbf{x}$.

(b) Find the compositions $L_1 \circ L_2$ and $L_2 \circ L_1$.

(c) Find the inverses L_1^{-1} and L_2^{-1} , or indicate that they do not exist.

©2015 Josh Engwer – Revised November 13, 2015

EX 6.3.2: Find std matrix A for linear transformation
$$L : \mathbb{R}^2 \to \mathbb{R}^4$$
 s.t. $L\left(\begin{bmatrix} 1\\4 \end{bmatrix}\right) = \begin{bmatrix} -3\\14\\-2\\6 \end{bmatrix}, L\left(\begin{bmatrix} 2\\-3 \end{bmatrix}\right) = \begin{bmatrix} 16\\-5\\7\\12 \end{bmatrix}$

<u>EX 6.3.3:</u> Find standard matrix A for linear transformation $L: P_2 \to P_2$ s.t. $L(p) = t^2 p''(t)$.

<u>EX 6.3.4</u>: Find standard matrix A for linear transformation $L: P_2 \to P_3$ s.t. $L(p) = \int p(t) dt$. (Do <u>not</u> include '+C')

<u>EX 6.3.5:</u> Find standard matrix A for linear transformation $L: P_2 \to \mathbb{R}$ s.t. $L(p) = \int_0^1 p(t) dt$.

 $[\]textcircled{C}2015$ Josh Engwer – Revised November 13, 2015