EX 7.1.2: Let square matrix $A=\left[\begin{array}{rrr}10 & -8 & -5 \\ 12 & -10 & -6 \\ -2 & 2 & 1\end{array}\right]$ with characteristic polynomial $p_{A}(\lambda)=\lambda(\lambda+1)(\lambda-2)$.
(a) Find the eigenvalues $\lambda_{1}<\lambda_{2}<\lambda_{3}$ of A.

$$
p_{A}(\lambda)=0 \Longrightarrow \lambda(\lambda+1)(\lambda-2)=0 \Longrightarrow \lambda \in\{0,-1,2\} \Longrightarrow \lambda_{1}=-1, \lambda_{2}=0, \lambda_{3}=2
$$

(b) Find the eigenspaces $E_{\lambda_{1}}, E_{\lambda_{2}}, E_{\lambda_{3}}$ of A.

$$
E_{\lambda_{2}}=\operatorname{NulSp}\left(A-\lambda_{2} I\right) \Longrightarrow A-\lambda_{2} I=A=\left[\begin{array}{rrr}
10 & -8 & -5 \\
12 & -10 & -6 \\
-2 & 2 & 1
\end{array}\right]
$$

$$
\left[\left(A-\lambda_{2} I\right) \mid \overrightarrow{\mathbf{0}}\right]=\left[\begin{array}{rrr|r}
10 & -8 & -5 & 0 \\
12 & -10 & -6 & 0 \\
-2 & 2 & 1 & 0
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{3}}\left[\begin{array}{rrr|r}
-2 & 2 & 1 & 0 \\
12 & -10 & -6 & 0 \\
10 & -8 & -5 & 0
\end{array}\right] \xrightarrow[\left(\frac{1}{2}\right) R_{2} \rightarrow R_{2}]{\left(-\frac{1}{2}\right) R_{1} \rightarrow R_{1}}\left[\begin{array}{rrr|r}
\boxed{1} & -1 & -1 / 2 & 0 \\
6 & -5 & -3 & 0 \\
10 & -8 & -5 & 0
\end{array}\right]
$$

$$
\xrightarrow[(-10) R_{1}+R_{3} \rightarrow R_{3}]{(-6) R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{ccc|c}
\boxed{1} & -1 & -1 / 2 & 0 \\
0 & \boxed{1} & 0 & 0 \\
0 & 2 & 0 & 0
\end{array}\right] \xrightarrow[R_{2}+R_{1} \rightarrow R_{1}]{(-2) R_{2}+R_{3} \rightarrow R_{3}}\left[\begin{array}{ccc|c}
\boxed{1} & 0 & -1 / 2 & 0 \\
0 & \boxed{1} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=\left[\operatorname{RREF}\left(A-\lambda_{2} I\right) \mid \overrightarrow{\mathbf{0}}\right]
$$

$$
E_{\lambda_{3}}=\operatorname{NulSp}\left(A-\lambda_{3} I\right) \Longrightarrow A-\lambda_{3} I=A-2 I=\left[\begin{array}{ccc}
(10-2) & -8 & -5 \\
12 & (-10-2) & -6 \\
-2 & 2 & (1-2)
\end{array}\right]=\left[\begin{array}{rrr}
8 & -8 & -5 \\
12 & -12 & -6 \\
-2 & 2 & -1
\end{array}\right]
$$

$$
\left[\begin{array}{rrr|r}
8 & -8 & -5 & 0 \\
12 & -12 & -6 & 0 \\
-2 & 2 & -1 & 0
\end{array}\right] \xrightarrow{\text { Gauss-Jordan }}\left[\begin{array}{ccc|c}
\begin{array}{|ccc}
1 & -1 & 0 \\
0 & 0 & \boxed{1} \\
0 \\
0 & 0 & 0
\end{array} & 0
\end{array}\right]
$$

(Gauss-Jordan steps omitted to conserve space.)

Column 2 has no pivot
$\begin{gathered}x_{2} \text { is a free variable } \\ \text { Let } x_{2}=t\end{gathered}$$\Longrightarrow\left\{\begin{array}{l}x_{1}=t \\ x_{3}=\end{array}=0\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}t \\ t \\ 0\end{array}\right]=t\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right] \quad \therefore \quad E_{\lambda_{3}}=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}\right.$
(c) Find eigenvectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ of A.
$\mathbf{x}_{1}=\left(\right.$ basis vector of $\left.E_{\lambda_{1}}\right)=\left[\begin{array}{r}-1 \\ -2 \\ 1\end{array}\right], \quad \mathbf{x}_{2}=\left(\right.$ basis vector of $\left.E_{\lambda_{2}}\right)=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right], \quad \mathbf{x}_{3}=\left(\right.$ basis vector of $\left.E_{\lambda_{3}}\right)=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$

$$
\begin{aligned}
& E_{\lambda_{1}}=\operatorname{NulSp}\left(A-\lambda_{1} I\right) \Longrightarrow A-\lambda_{1} I=A+I=\left[\begin{array}{ccc}
(10+1) & -8 & -5 \\
12 & (-10+1) & -6 \\
-2 & 2 & (1+1)
\end{array}\right]=\left[\begin{array}{ccc}
11 & -8 & -5 \\
12 & -9 & -6 \\
-2 & 2 & 2
\end{array}\right] \\
& {\left[\left(A-\lambda_{1} I\right) \mid \overrightarrow{\mathbf{0}}\right]=\left[\begin{array}{rrr|r}
11 & -8 & -5 & 0 \\
12 & -9 & -6 & 0 \\
-2 & 2 & 2 & 0
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{3}}\left[\begin{array}{rrr|r}
-2 & 2 & 2 & 0 \\
12 & -9 & -6 & 0 \\
11 & -8 & -5 & 0
\end{array}\right] \xrightarrow[\left(\frac{1}{3}\right) R_{2} \rightarrow R_{2}]{\left(-\frac{1}{2}\right) R_{1} \rightarrow R_{1}}\left[\begin{array}{ccc|c}
\begin{array}{|cc|}
1 & -1
\end{array} & -1 & 0 \\
4 & -3 & -2 & 0 \\
11 & -8 & -5 & 0
\end{array}\right]} \\
& \xrightarrow[(-11) R_{1}+R_{3} \rightarrow R_{3}]{(-4) R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{rrr|r}
1 & -1 & -1 & 0 \\
0 & \boxed{1} & 2 & 0 \\
0 & 3 & 6 & 0
\end{array}\right] \xrightarrow{(-3) R_{2}+R_{3} \rightarrow R_{3}}\left[\begin{array}{rrr|r}
\boxed{1} & -1 & -1 & 0 \\
0 & \boxed{1} & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{R_{2}+R_{1} \rightarrow R_{1}}\left[\begin{array}{rrrr|r}
\boxed{1} & 0 & 1 & 0 \\
0 & \left.\begin{array}{|c|c|c|c|c}
1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{array}\right.
\end{aligned}
$$

EX 7.1.3: Let sparse square matrix $A=\left[\begin{array}{rrr}-3 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -2 & 2\end{array}\right]$.
(a) Find the characteristic polynomial $p_{A}(\lambda)$.

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{ccc}
(-3-\lambda) & 0 & 0 \\
0 & (3-\lambda) & -1 \\
0 & -2 & (2-\lambda)
\end{array}\right|=(-3-\lambda)\left|\begin{array}{cc}
(3-\lambda) & -1 \\
-2 & (2-\lambda)
\end{array}\right|=(-3-\lambda)[(3-\lambda)(2-\lambda)-2] \\
& =(-3-\lambda)\left[6-5 \lambda+\lambda^{2}-2\right]=(-3-\lambda)\left(\lambda^{2}-5 \lambda+4\right)=(-3-\lambda)(\lambda-4)(\lambda-1)
\end{aligned}
$$

$$
p_{A}(\lambda)=\operatorname{det}(\lambda I-A)=(-1)^{3} \operatorname{det}(A-\lambda I)=(-1)[(-3-\lambda)(\lambda-4)(\lambda-1)]=(\lambda+3)(\lambda-4)(\lambda-1)
$$

(b) Find the eigenvalues $\lambda_{1}<\lambda_{2}<\lambda_{3}$ of A.

$$
p_{A}(\lambda)=0 \Longrightarrow(\lambda+3)(\lambda-4)(\lambda-1)=0 \Longrightarrow \lambda \in\{-3,4,1\} \Longrightarrow \lambda_{1}=-3, \quad \lambda_{2}=1, \quad \lambda_{3}=4
$$

(c) Find the eigenspaces $E_{\lambda_{1}}, E_{\lambda_{2}}, E_{\lambda_{3}}$ of A.

Column 1 has no pivot
x_{1} is a free variable

$$
\text { Let } x_{1}=t
$$

$$
\Longrightarrow\left\{\begin{array}{l}
x_{2}=0 \\
x_{3}=0
\end{array} \Longrightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
t \\
0 \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right.
$$

$$
\therefore E_{\lambda_{1}}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\}
$$

$$
E_{\lambda_{2}}=\operatorname{NulSp}\left(A-\lambda_{2} I\right) \Longrightarrow A-\lambda_{2} I=A-I=\left[\begin{array}{ccc}
(-3-1) & 0 & 0 \\
0 & (3-1) & -1 \\
0 & -2 & (2-1)
\end{array}\right]=\left[\begin{array}{rrr}
-4 & 0 & 0 \\
0 & 2 & -1 \\
0 & -2 & 1
\end{array}\right]
$$

$$
\left[\left(A-\lambda_{2} I\right) \mid \overrightarrow{\mathbf{0}}\right]=\left[\begin{array}{rrr|r}
-4 & 0 & 0 & 0 \\
0 & 2 & -1 & 0 \\
0 & -2 & 1 & 0
\end{array}\right] \xrightarrow{R_{2}+R_{3} \leftrightarrow R_{3}}\left[\begin{array}{rrr|r}
-4 & 0 & 0 & 0 \\
0 & 2 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow[\left(\frac{1}{2}\right) R_{2} \rightarrow R_{2}]{\left(-\frac{1}{4}\right) R_{1} \rightarrow R_{1}}\left[\begin{array}{ccc|c}
\left.\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & -1 / 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{array}\right.
$$

$$
\begin{gathered}
\text { Column } 3 \text { has no pivot } \\
x_{3} \text { is a free variable } \\
\text { Let } x_{3}=2 t
\end{gathered} \Longrightarrow\left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=t
\end{array} \Longrightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
t \\
2 t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right] \quad \therefore E_{\lambda_{2}}=\operatorname{span}\left\{\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]\right\}\right.
$$

$$
E_{\lambda_{3}}=\operatorname{NulSp}\left(A-\lambda_{3} I\right) \Longrightarrow A-\lambda_{3} I=A-4 I=\left[\begin{array}{ccc}
(-3-4) & 0 & 0 \\
0 & (3-4) & -1 \\
0 & -2 & (2-4)
\end{array}\right]=\left[\begin{array}{rrr}
-7 & 0 & 0 \\
0 & -1 & -1 \\
0 & -2 & -2
\end{array}\right]
$$

$$
\left[\left(A-\lambda_{3} I\right) \mid \overrightarrow{\mathbf{0}}\right]=\left[\begin{array}{rrr|r}
-7 & 0 & 0 & 0 \\
0 & -1 & -1 & 0 \\
0 & -2 & -2 & 0
\end{array}\right] \xrightarrow{(-2) R_{2}+R_{3} \leftrightarrow R_{3}}\left[\begin{array}{rrr|r}
-7 & 0 & 0 & 0 \\
0 & -1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow[(-1) R_{2} \rightarrow R_{2}]{\left(-\frac{1}{7}\right) R_{1} \rightarrow R_{1}}\left[\begin{array}{rrr|r}
\hline 1 & 0 & 0 & 0 \\
0 & \boxed{1} & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\begin{gathered}
\text { Column } 3 \text { has no pivot } \\
x_{3} \text { is a free variable } \\
\text { Let } x_{3}=t
\end{gathered} \Longrightarrow\left\{\begin{array}{r}
x_{1}= \\
x_{2} \\
x_{2}
\end{array}=-t .\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
0 \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right] \quad \therefore\left[E_{\lambda_{3}}=\operatorname{span}\left\{\left[\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right]\right\}\right.\right.
$$

(d) Find eigenvectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ of A.
$\mathbf{x}_{1}=\left(\right.$ basis vector of $\left.E_{\lambda_{1}}\right)=(1,0,0)^{T}, \quad \mathbf{x}_{2}=\left(\right.$ basis vector of $\left.E_{\lambda_{2}}\right)=(0,1,2)^{T}, \quad \mathbf{x}_{3}=(0,-1,1)^{T}$

$$
\begin{aligned}
& E_{\lambda_{1}}=\operatorname{NulSp}\left(A-\lambda_{1} I\right) \Longrightarrow A-\lambda_{1} I=A+3 I=\left[\begin{array}{ccc}
(-3+3) & 0 & 0 \\
0 & (3+3) & -1 \\
0 & -2 & (2+3)
\end{array}\right]=\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & 6 & -1 \\
0 & -2 & 5
\end{array}\right] \\
& {\left[\left(A-\lambda_{1} I\right) \mid \overrightarrow{\mathbf{0}}\right]=\left[\begin{array}{rrr|l}
0 & 0 & 0 & 0 \\
0 & 6 & -1 & 0 \\
0 & -2 & 5 & 0
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{3}}\left[\begin{array}{rrr|r}
0 & -2 & 5 & 0 \\
0 & 6 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{3 R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{rrc|c}
0 & -2 & 5 & 0 \\
0 & 0 & 14 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& \xrightarrow{\left(\frac{1}{14}\right) R_{2} \rightarrow R_{2}}\left[\begin{array}{rrr|l}
0 & -2 & 5 & 0 \\
0 & 0 & \boxed{1} & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{(-5) R_{2}+R_{1} \rightarrow R_{1}}\left[\begin{array}{rrr|r}
0 & -2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{\left(-\frac{1}{2}\right) R_{1} \rightarrow R_{1}}\left[\begin{array}{ccc|c}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

