EX 7.1.5: Let square matrix $A=\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right]$.
(a) Find the characteristic polynomial $p_{A}(\lambda)$.

Since A is diagonal, $(A-\lambda I)$ is diagonal $\Longrightarrow \operatorname{det}(A-\lambda I)=$ product of its main diagonal entries:

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
(3-\lambda) & 0 & 0 \\
0 & (3-\lambda) & 0 \\
0 & 0 & (4-\lambda)
\end{array}\right|=(3-\lambda)(3-\lambda)(4-\lambda) \Longrightarrow p_{A}(\lambda)=(-1)^{3} \operatorname{det}(A-\lambda I)=(\lambda-3)^{2}(\lambda-4)
$$

(b) Find the eigenvalues $\lambda_{1}<\lambda_{2}$ of A. What are the algebraic multiplicities of λ_{1}, λ_{2} ?

$$
p_{A}(\lambda)=0 \Longrightarrow(\lambda-3)^{2}(\lambda-4)=0 \Longrightarrow \begin{array}{|l|l|}
\lambda_{1}=3 & \Longrightarrow \quad \mathrm{AM}\left[\lambda_{1}\right]=\text { power of }(\lambda-3) \text { factor in factored } p_{A}(\lambda)=2 \\
\lambda_{2}=4 & \Longrightarrow \quad \mathrm{AM}\left[\lambda_{2}\right]=\text { power of }(\lambda-4) \text { factor in factored } p_{A}(\lambda)=1 \\
\hline \hline
\end{array}
$$

(c) Find the eigenspaces $E_{\lambda_{1}}, E_{\lambda_{2}}$ of A. What are the geometric multiplicities of λ_{1}, λ_{2} ?

$$
\begin{aligned}
& E_{\lambda_{1}}=\operatorname{NulSp}\left(A-\lambda_{1} I\right) \Longrightarrow A-\lambda_{1} I=A-3 I=\left[\begin{array}{ccc}
(3-3) & 0 & 0 \\
0 & (3-3) & 0 \\
0 & 0 & (4-3)
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& {\left[\left(A-\lambda_{1} I\right) \mid \overrightarrow{\mathbf{0}}\right]=\left[\begin{array}{lll|l}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{3}}\left[\begin{array}{ccc|c}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=\left[\operatorname{RREF}\left(A-\lambda_{1} I\right) \mid \overrightarrow{\mathbf{0}}\right]}
\end{aligned}
$$

$\begin{gathered}\text { Columns } 1 \& 2 \text { have no pivot } \\ x_{1}, x_{2} \text { are free variables } \\ \text { Let } x_{1}=s, x_{2}=t\end{gathered} \Longrightarrow x_{3}=0 \Longrightarrow\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}s \\ t \\ 0\end{array}\right]=\left[\begin{array}{l}s \\ 0 \\ 0\end{array}\right]+\left[\begin{array}{l}0 \\ t \\ 0\end{array}\right]=s\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+t\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$

$$
\therefore E_{\lambda_{1}}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}
$$

$E_{\lambda_{2}}=\operatorname{NulSp}\left(A-\lambda_{2} I\right) \Longrightarrow A-\lambda_{2} I=A-4 I=\left[\begin{array}{ccc}(3-4) & 0 & 0 \\ 0 & (3-4) & 0 \\ 0 & 0 & (4-4)\end{array}\right]=\left[\begin{array}{rrr}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right]$
$\left[\left(A-\lambda_{2} I\right) \mid \overrightarrow{\mathbf{0}}\right]=\left[\begin{array}{rrr|r}-1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \xrightarrow[(-1) R_{2} \rightarrow R_{2}]{(-1) R_{1} \rightarrow R_{1}}\left[\begin{array}{ccc|c}\boxed{1} & 0 & 0 & 0 \\ 0 & \boxed{1} & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]=\left[\operatorname{RREF}\left(A-\lambda_{2} I\right) \mid \overrightarrow{\mathbf{0}}\right]$

$$
\begin{gathered}
\text { Column } 3 \text { has no pivot } \\
x_{3} \text { is a free variable } \\
\text { Let } x_{3}=t
\end{gathered} \Longrightarrow \begin{aligned}
& x_{1}=0 \\
& x_{2}=0
\end{aligned} \Longrightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \therefore \quad E_{\lambda_{2}}=\operatorname{span}\left\{\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

$$
\begin{aligned}
& \operatorname{GM}\left[\lambda_{1}\right]=\operatorname{dim}\left(E_{\lambda_{1}}\right)=2 \\
& \operatorname{GM}\left[\lambda_{2}\right]=\operatorname{dim}\left(E_{\lambda_{2}}\right)=1
\end{aligned}
$$

(d) Find eigenvector(s) of A. Is A defective?

$$
\begin{aligned}
\mathbf{x}_{1,1} & =1^{s t} \text { basis vector of } E_{\lambda_{1}} \\
\mathbf{x}_{1,2} & =2^{\text {nd }} \text { basis vector of } E_{\lambda_{1}}
\end{aligned}=(1,0,0)^{T},(0,1,0)^{T}, ~(0,0,1)^{T} .
$$

$$
\text { Since } \operatorname{AM}\left[\lambda_{1}\right]=\operatorname{GM}\left[\lambda_{1}\right] \text { and } \operatorname{AM}\left[\lambda_{2}\right]=\operatorname{GM}\left[\lambda_{2}\right], A \text { is not defective. }
$$

EX 7.1.6: Let square matrix $A=\left[\begin{array}{lll}3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right]$.
(a) Find the characteristic polynomial $p_{A}(\lambda)$.

Since A is upper triangular, $(A-\lambda I)$ is upper triangular $\Longrightarrow \operatorname{det}(A-\lambda I)=$ product of its main diagonal entries:

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
(3-\lambda) & 1 & 0 \\
0 & (3-\lambda) & 0 \\
0 & 0 & (4-\lambda)
\end{array}\right|=(3-\lambda)(3-\lambda)(4-\lambda) \Longrightarrow p_{A}(\lambda)=(-1)^{3} \operatorname{det}(A-\lambda I)=(\lambda-3)^{2}(\lambda-4)
$$

(b) Find the eigenvalues $\lambda_{1}<\lambda_{2}$ of A. What are the algebraic multiplicities of λ_{1}, λ_{2} ?
(c) Find the eigenspaces $E_{\lambda_{1}}, E_{\lambda_{2}}$ of A. What are the geometric multiplicities of λ_{1}, λ_{2} ?

$$
\begin{aligned}
& E_{\lambda_{1}}=\operatorname{NulSp}\left(A-\lambda_{1} I\right) \Longrightarrow A-\lambda_{1} I=A-3 I=\left[\begin{array}{ccc}
(3-3) & 1 & 0 \\
0 & (3-3) & 0 \\
0 & 0 & (4-3)
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& {\left[\left(A-\lambda_{1} I\right) \mid \overrightarrow{\mathbf{0}}\right]=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \xrightarrow{R_{2} \leftrightarrow R_{3}}\left[\begin{array}{ccc|c}
0 & 1 & 0 & 0 \\
0 & 0 & \boxed{1} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=\left[\operatorname{RREF}\left(A-\lambda_{1} I\right) \mid \overrightarrow{\mathbf{0}}\right]}
\end{aligned}
$$

$$
\begin{gathered}
\text { Column } 1 \text { has no pivot } \\
x_{1} \text { is a free variable } \\
\text { Let } x_{1}=t
\end{gathered} \Longrightarrow \begin{aligned}
& x_{2}=0 \\
& x_{3}=0
\end{aligned} \Longrightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
t \\
0 \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \therefore \quad E_{\lambda_{1}}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\}
$$

$$
E_{\lambda_{2}}=\operatorname{NulSp}\left(A-\lambda_{2} I\right) \Longrightarrow A-\lambda_{2} I=A-4 I=\left[\begin{array}{ccc}
(3-4) & 1 & 0 \\
0 & (3-4) & 0 \\
0 & 0 & (4-4)
\end{array}\right]=\left[\begin{array}{rrr}
-1 & 1 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\left[\left(A-\lambda_{2} I\right) \mid \overrightarrow{\mathbf{0}}\right]=\left[\begin{array}{rrr|r}
-1 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow[(-1) R_{2} \rightarrow R_{2}]{(-1) R_{1} \rightarrow R_{1}}\left[\begin{array}{rrr|r}
\boxed{1} & -1 & 0 & 0 \\
0 & \boxed{1} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{R_{2}+R_{1} \rightarrow R_{1}}\left[\begin{array}{rrrrr}
\boxed{1} & 0 & 0 & 0 \\
0 & \boxed{1} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\begin{gathered}
\text { Column } 3 \text { has no pivot } \\
x_{3} \text { is a free variable } \\
\text { Let } x_{3}=t
\end{gathered} \Longrightarrow \begin{aligned}
& x_{1}=0 \\
& x_{2}=0
\end{aligned} \Longrightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \therefore \quad E_{\left.\left.\lambda_{2}=\operatorname{span}\left\{\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}\right\}\right\} ? ~}^{\text {a }}
$$

$$
\begin{aligned}
& \operatorname{GM}\left[\lambda_{1}\right]=\operatorname{dim}\left(E_{\lambda_{1}}\right)=1 \\
& \operatorname{GM}\left[\lambda_{2}\right]=\operatorname{dim}\left(E_{\lambda_{2}}\right)=1
\end{aligned}
$$

(d) Find eigenvector(s) of A. Is A defective?
$\mathbf{x}_{1}=$ Basis vector of $E_{\lambda_{1}}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \quad \mathbf{x}_{2}=$ Basis vector of $\left.E_{\lambda_{2}}=\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$

Since $\operatorname{AM}\left[\lambda_{1}\right]>\operatorname{GM}\left[\lambda_{1}\right], A$ is defective.

EX 7.1.7: Let square matrix $A=\left[\begin{array}{rrr}2 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right]$.
(a) Find the characteristic polynomial $p_{A}(\lambda)$.

Since A is sparse, $(A-\lambda I)$ is sparse \Longrightarrow Use a cofactor expansion to find $\operatorname{det}(A-\lambda I)$:

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
(2-\lambda) & 0 & 0 \\
0 & (0-\lambda) & -1 \\
0 & 1 & (0-\lambda)
\end{array}\right|=(2-\lambda)\left|\begin{array}{rr}
-\lambda & -1 \\
1 & -\lambda
\end{array}\right|=(2-\lambda)\left(\lambda^{2}+1\right) \\
& \Longrightarrow p_{A}(\lambda)=(-1)^{3} \operatorname{det}(A-\lambda I)=\left(\lambda^{2}+1\right)(\lambda-2)
\end{aligned}
$$

(b) Find the real eigenvalue λ_{1} of A. (The other eigenvalue(s) are complex.)

Observe that $\left(\lambda^{2}+1\right)$ is an irreducible quadratic $\Longrightarrow \lambda^{2}+1=0$ yields complex eigenvalues, so ignore them!

$$
\therefore p_{A}(\lambda)=0 \Longrightarrow(\lambda-2)=0 \Longrightarrow \lambda_{1}=2
$$

(c) Find the eigenspace $E_{\lambda_{1}}$ of A.

$$
\begin{aligned}
& E_{\lambda_{1}}=\operatorname{NulSp}\left(A-\lambda_{1} I\right) \Longrightarrow A-\lambda_{1} I=A-2 I=\left[\begin{array}{ccc}
(2-2) & 0 & 0 \\
0 & (0-2) & -1 \\
0 & 1 & (0-2)
\end{array}\right]=\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & -2 & -1 \\
0 & 1 & -2
\end{array}\right] \\
& {\left[\left(A-\lambda_{1} I\right) \mid \overrightarrow{\mathbf{0}}\right]=\left[\begin{array}{rrr|r}
0 & 0 & 0 & 0 \\
0 & -2 & -1 & 0 \\
0 & 1 & -2 & 0
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{3}}\left[\begin{array}{rrr|r}
0 & \boxed{1} & -2 & 0 \\
0 & -2 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{2 R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{rrr|r}
0 & \boxed{1} & -2 & 0 \\
0 & 0 & -5 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& \xrightarrow{\left(-\frac{1}{5}\right) R_{2} \rightarrow R_{2}}\left[\begin{array}{ccc|c}
0 & \boxed{1} & -2 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{2 R_{2}+R_{1} \rightarrow R_{1}}\left[\begin{array}{ccc|c}
0 & \boxed{1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=\left[\operatorname{RREF}\left(A-\lambda_{1} I\right) \mid \overrightarrow{\mathbf{0}}\right] \\
& \begin{array}{c}
\text { Column } 1 \text { has no pivot } \\
x_{1} \text { is a free variable } \\
\text { Let } x_{1}=t
\end{array} \Longrightarrow \begin{array}{l}
x_{2}=0 \\
x_{3}=0
\end{array} \Longrightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
t \\
0 \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \therefore\left[\begin{array}{l}
E_{\lambda_{1}}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\}
\end{array}\right.
\end{aligned}
$$

(d) Find real eigenvector(s) of A. (The other eigenvector(s) are complex.)
$\mathbf{x}_{1}=$ Basis vector of $\left.E_{\lambda_{1}}=\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$

