EIGENVALUES, EIGENVECTORS, EIGENSPACES: PART I [LARSON 7.1]

• EIGENVALUES & EIGENVECTORS OF A SQUARE MATRIX (DEFINITION):

Let square matrix $A \in \mathbb{R}^{n \times n}$, non-zero vector $\mathbf{x} \in \mathbb{R}^n$, and scalar $\lambda \in \mathbb{R}$.

Then λ is an **eigenvalue** of $A \& \mathbf{x}$ is a corresponding **eigenvector** of A if

(EIG)
$$A\mathbf{x} = \lambda \mathbf{x}$$
 (where $\mathbf{x} \neq \mathbf{0}$)

Moreover, the ordered pair (λ, \mathbf{x}) is called an **eigenpair** of A.

- MORE REGARDING EIGENVECTORS: Let square matrix $A \in \mathbb{R}^{n \times n}$. Then:
 - (i) A scalar multiple of an eigenvector is also an eigenvector:

(EIG1) (λ, \mathbf{x}) is an eigenpair of $A \implies (\lambda, \alpha \mathbf{x})$ is an eigenpair of $A \quad (\alpha \neq 0)$

- (ii) The sum of two eigenvectors with same eigenvalue is also an eigenvector:
 - (EIG2) $(\lambda, \mathbf{x}_1), (\lambda, \mathbf{x}_2)$ are eigenpairs of $A \implies (\lambda, \mathbf{x}_1 + \mathbf{x}_2)$ is an eigenpair of A

• EIGENSPACES OF A SQUARE MATRIX:

Let square matrix $A \in \mathbb{R}^{n \times n}$ and $\lambda \in \mathbb{R}$ be an eigenvalue of A.

Then the λ -eigenspace of A is the following subspace of \mathbb{R}^n : $E_{\lambda} := \{\mathbf{x} \in \mathbb{R}^n : (\lambda, \mathbf{x}) \text{ is an eigenpair of } A\} \cup \{\vec{\mathbf{0}}\}$

- i.e. The λ -eigenspace is the set of all eigenvectors of A with eigenvalue λ together with the zero vector
 - (but of course $\vec{0}$ is <u>not</u> an eigenvector.)

• CHARACTERISTIC POLYNOMIAL FOR A SQUARE MATRIX:

Let square matrix $A \in \mathbb{R}^{n \times n}$ and $\lambda \in \mathbb{R}$ be an eigenvalue of A.

Then the **characteristic polynomial** of A is defined to be: $p_A(\lambda) := \det(\lambda I - A) = (-1)^n \det(A - \lambda I)$

Moreover, $p_A(\lambda)$ is a polynomial in λ of degree n.

Moreover, the equation $p_A(\lambda) = 0$ is called the **characteristic equation** for A.

• EIGENVALUES, EIGENVECTORS & THE CHARACTERISTIC POLYNOMIAL:

Let square matrix $A \in \mathbb{R}^{n \times n}$, non-zero vector $\mathbf{x} \in \mathbb{R}^n$, scalar $\lambda \in \mathbb{R}$. Then:

(i) λ is an eigenvalue of $A \iff p_A(\lambda) = 0 \iff \det(A - \lambda I) = 0$

(ii) **x** is an eigenvector of $A \iff (\lambda I - A)\mathbf{x} = \vec{\mathbf{0}} \iff (A - \lambda I)\mathbf{x} = \vec{\mathbf{0}}$

• CASE I: DISTINCT REAL EIGENVALUES:

Let square matrix $A \in \mathbb{R}^{n \times n}$ s.t. all eigenvalues are real & distinct. Then:

A has n eigenpairs $(\lambda_1, \mathbf{x}_1), (\lambda_2, \mathbf{x}_2), \cdots, (\lambda_n, \mathbf{x}_n)$ s.t. $\lambda_1 < \lambda_2 < \cdots < \lambda_n$.

i.e. Distinct eigenvalue λ_k has one distinct eigenvector \mathbf{x}_k s.t. $A\mathbf{x}_k = \lambda_k \mathbf{x}_k$.

• CASE I: DISTINCT REAL EIGENVALUES (PROCEDURE):

<u>GIVEN</u>: Square Matrix $A \in \mathbb{R}^{n \times n}$ s.t. all eigenvalues are real & distinct.

<u>TASK:</u> Find the Eigenvalues λ_k , Eigenvectors \mathbf{x}_k , Eigenspaces E_{λ_k} of A.

- (1) Find Characteristic Polynomial $p_A(\lambda) = (-1)^n \det(A \lambda I)$
- (2) Solve Characteristic Eqn det $(A \lambda I) = 0$ to find Eigenvalues $\lambda_1, \ldots, \lambda_n$
- (3) Find the Eigenspace for each Eigenvalue λ_k : $E_{\lambda_k} = \text{NulSp}(A \lambda_k I)$
- (4) Find an Eigenvector for each Eigenvalue λ_k : $\mathbf{x}_k = (\text{basis vector for } E_{\lambda_k})$

<u>SANITY CHECKS</u>: $A\mathbf{x}_k = \lambda_k \mathbf{x}_k$, dim $(E_{\lambda_k}) = 1$, \mathbf{x}_k 's are distinct and non-zero

• EIGENVALUES OF TRIANGULAR & DIAGONAL MATRICES:

The eigenvalues of a triangular matrix are the main diagonal entries.

The eigenvalues of a diagonal matrix are the main diagonal entries.

^{©2015} Josh Engwer - Revised November 16, 2015

EIGENVALUES, EIGENVECTORS, EIGENSPACES: PART II [LARSON 7.1]

• MULTIPLICITIES OF EIGENVALUES (DEFINITION):

Let matrix $A \in \mathbb{R}^{n \times n}$ have (repeated) real eigenvalues $\lambda_1 < \lambda_2 < \cdots < \lambda_p$, where p < n

Moreover, let A have the following factored characteristic polynomial

$$p_A(\lambda) = (\lambda - \lambda_1)^{m_1} (\lambda - \lambda_2)^{m_2} \cdots (\lambda - \lambda_p)^{m_p} \text{ (where } m_1, \dots, m_p \in \mathbb{Z}_+)$$

The algebraic multiplicity (AM) of eigenvalue λ_k is m_k .

The **geometric multiplicity (GM)** of eigenvalue λ_k is dim (E_{λ_k}) .

i.e. $\operatorname{AM}[\lambda_k] := m_k = \#$ occurrences of $\lambda_k = \text{power of factor } (\lambda - \lambda_k)$ in $p_A(\lambda)$.

i.e. $GM[\lambda_k] := \dim(E_{\lambda_k}) = \#$ basis vectors of eigenspace E_{λ_k} .

• DEFECTIVE MATRICES (DEFINITION):

Let square matrix $A \in \mathbb{R}^{n \times n}$ have eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_p$, where $p \leq n$. Then:

A is a **defective matrix** if at least one eigenvalue λ_k satisfies $AM[\lambda_k] > GM[\lambda_k]$

i.e. There's fewer linearly indep. eigenvectors for λ_k than # occurrences of λ_k .

e.g. Matrix $D = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ is defective since $\lambda_1 = 1$ and $AM[\lambda_1] = 3$, $GM[\lambda_1] = 2 \implies AM[\lambda_1] > GM[\lambda_1]$ e.g. Matrix $F = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is defective since $\lambda_1 = 1$ and $AM[\lambda_1] = 3$, $GM[\lambda_1] = 1 \implies AM[\lambda_1] > GM[\lambda_1]$

• CASE II: REPEATED REAL EIGENVALUES (PROCEDURE):

<u>GIVEN</u>: Square Matrix $A \in \mathbb{R}^{n \times n}$ s.t. all eigenvalues are real, some repeated.

<u>TASK:</u> Find the Eigenvalues λ_k , Eigenvectors \mathbf{x}_k , Eigenspaces E_{λ_k} of A.

(1) Find Characteristic Polynomial $p_A(\lambda) = (-1)^n \det(A - \lambda I)$

(2) Solve Characteristic Eqn $p_A(\lambda) = 0$ to find Eigenvalues $\lambda_1, \ldots, \lambda_p$ (p < n)

(3) Find the Eigenspace for each Eigenvalue λ_k : $E_{\lambda_k} = \text{NulSp}(A - \lambda_k I)$

(4) Find an Eigenvector for each λ_k .

If distinct λ_k : $\mathbf{x}_k = (\text{basis vector for } E_{\lambda_k})$

If repeated λ_k : $\mathbf{x}_{k,1} = (1^{st} \text{ basis vector for } E_{\lambda_k}), \mathbf{x}_{k,2} = (2^{nd} \text{ basis vector for } E_{\lambda_k}), \dots$

IMPORTANT: Repeated eigenvalues do not receive different indices!!

e.g. If A has eigenvalues 4, 2, 2, 2, -1, -1, then: $\lambda_1 = -1, \lambda_2 = 2, \lambda_3 = 4$

• **<u>INVERTIBILITY & EIGENVALUES</u>**: Let square matrix $A \in \mathbb{R}^{n \times n}$. Then:

A is invertible \iff All eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_p$ $(p \le n)$ are non-zero A is not invertible \iff At least one eigenvalue $\lambda_k = 0$

^{©2015} Josh Engwer - Revised November 16, 2015

EIGENVALUES, EIGENVECTORS, EIGENSPACES: PART III [LARSON 7.1]

• IRREDUCIBLE QUADRATICS (DEFN): Quadratic $ax^2 + bx + c$ is an irreducible quadratic $\iff b^2 - 4ac < 0$.

i.e., the linear factors of an irreducible quadratic are **complex** (not real): (Recall that **imaginary number** $i = \sqrt{-1}$)

- * $x^{2} + 1$ is irreducible since $x^{2} + 1 = (x i)(x + i)$ $[b^{2} 4ac = -4 < 0]$
- * $x^2 1$ is reducible since $x^2 1 = (x 1)(x + 1)$ $\begin{bmatrix} b^2 4ac = 4 > 0 \end{bmatrix}$
- * $x^2 + 2x + 2$ is irreducible since $x^2 + 2x + 2 = [x + (1 i)][x + (1 + i)]$ $[b^2 4ac = -4 < 0]$

• FUNDAMENTAL THEOREM OF ALGEBRA (FTA):

Every n^{th} -degree polynomial with complex coefficients can be factored into n linear factors with complex coefficients, some of which may be repeated.

• COROLLARY TO THE FTA:

Every n^{th} -degree polynomial with <u>real</u> coefficients can be factored into linears & irreducible quadratics with real coefficients.

What this corollary means for finding eigenvalues is that the characteristic polynomial can always be factored into:

Linear factors $(\lambda - \lambda_k)$ AND Irreducible quadratics $(\lambda^2 + \alpha \lambda + \beta)$.

e.g. If a 4 × 4 matrix A has characteristic poly $p_A(\lambda) = (\lambda^2 + 1)(\lambda - 3)(\lambda + 4)$,

then A has real eigenvalues $\lambda_1 = -4, \lambda_2 = 3$ and two complex eigenvalues since $\lambda^2 + 1$ is an irreducible quadratic.

• CASE III: SOME COMPLEX EIGENVALUES (PROCEDURE):

<u>GIVEN</u>: Square Matrix $A \in \mathbb{R}^{n \times n}$ s.t. some eigenvalues are complex.

<u>TASK:</u> Find the **real** Eigenvalues λ_k , Eigenvectors \mathbf{x}_k , Eigenspaces E_{λ_k} of A.

- (1) Find Characteristic Polynomial $p_A(\lambda) = (-1)^n \det(A \lambda I)$
- (2) Solve Characteristic Eqn $p_A(\lambda) = 0$, ignoring irreducible quadratics, to find real Eigenvalues.
- (3) Find the Eigenspace for each real Eigenvalue λ_k : $E_{\lambda_k} = \text{NulSp}(A \lambda_k I)$
- (4) Find an Eigenvector for each λ_k .

If distinct λ_k : $\mathbf{x}_k = (\text{basis vector for } E_{\lambda_k})$

If repeated λ_k : $\mathbf{x}_{k,1} = (1^{st} \text{ basis vector for } E_{\lambda_k}), \mathbf{x}_{k,2} = (2^{nd} \text{ basis vector for } E_{\lambda_k}), \dots$

 $\underline{\text{IMPORTANT:}} \ \text{Repeated eigenvalues do} \ \underline{\text{not}} \ \text{receive different indices!!}$

e.g. If A has eigenvalues 4, 2, 2, 2, -1, -1, then: $\lambda_1 = -1, \lambda_2 = 2, \lambda_3 = 4$

CASE IV: ALL COMPLEX EIGENVALUES (PROCEDURE):

The Good News: CASE IV will <u>never</u> be considered in this course!

The Bad News: CASE IV will show up in higher math courses (e.g. Differential Equations II)

Here are some 2×2 matrices that have all complex eigenvalues:

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{bmatrix}, \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

The standard matrix for linear transformations representing certain rotations will have all complex eigenvalues.

Of course, since all matrices considered will have real entries, a complex eigenvalue will have complex eigenvector(s).

EX 7.1.1: Let square matrix
$$A = \begin{bmatrix} 1 & 1 \\ 4 & -2 \end{bmatrix}$$
.

- (a) Find the characteristic polynomial $p_A(\lambda)$.
- (b) Find the eigenvalues $\lambda_1 < \lambda_2$ of A.
- (c) Find the eigenspaces $E_{\lambda_1}, E_{\lambda_2}$ of A.

(d) Find eigenvectors $\mathbf{x}_1, \mathbf{x}_2$ of A.

EX 7.1.2: Let square matrix
$$A = \begin{bmatrix} 10 & -8 & -5 \\ 12 & -10 & -6 \\ -2 & 2 & 1 \end{bmatrix}$$
 with characteristic polynomial $p_A(\lambda) = \lambda(\lambda+1)(\lambda-2)$.

- (a) Find the eigenvalues $\lambda_1 < \lambda_2 < \lambda_3$ of A.
- (b) Find the eigenspaces $E_{\lambda_1}, E_{\lambda_2}, E_{\lambda_3}$ of A.

(c) Find eigenvectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ of A.

<u>EX 7.1.3</u>: Let sparse square matrix $A = \begin{bmatrix} -3 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -2 & 2 \end{bmatrix}$.

- (a) Find the characteristic polynomial $p_A(\lambda)$.
- (b) Find the eigenvalues $\lambda_1 < \lambda_2 < \lambda_3$ of A.
- (c) Find the eigenspaces $E_{\lambda_1}, E_{\lambda_2}, E_{\lambda_3}$ of A.

(d) Find eigenvectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ of A.

EX 7.1.4: Let square matrix
$$A = \begin{bmatrix} 3 & 1/2 \\ -2 & 5 \end{bmatrix}$$
.

- (a) Find the characteristic polynomial $p_A(\lambda)$.
- (b) Find the eigenvalue λ_1 of A. What is the algebraic multiplicity of λ_1 ?
- (c) Find the eigenspace E_{λ_1} of A. What is the geometric multiplicity of λ_1 ?

(d) Find eigenvector(s) of A. Is A defective?

		3	0	0]
EX 7.1.5:	Let square matrix $A =$	0	3	0
		0	0	4

- (a) Find the characteristic polynomial $p_A(\lambda)$.
- (b) Find the eigenvalues $\lambda_1 < \lambda_2$ of A. What are the algebraic multiplicities of λ_1, λ_2 ?
- (c) Find the eigenspaces $E_{\lambda_1}, E_{\lambda_2}$ of A. What are the geometric multiplicities of λ_1, λ_2 ?

(d) Find eigenvector(s) of A. Is A defective?

		3	1	0]
EX 7.1.6:	Let square matrix $A =$	0	3	0
		0	0	4

- (a) Find the characteristic polynomial $p_A(\lambda)$.
- (b) Find the eigenvalues $\lambda_1 < \lambda_2$ of A. What are the algebraic multiplicities of λ_1, λ_2 ?
- (c) Find the eigenspaces $E_{\lambda_1}, E_{\lambda_2}$ of A. What are the geometric multiplicities of λ_1, λ_2 ?

(d) Find eigenvector(s) of A. Is A defective?

		2	0	0	
EX 7.1.7:	Let square matrix $A =$	0	0	-1	.
		0	1	0	

- (a) Find the characteristic polynomial $p_A(\lambda)$.
- (b) Find the <u>real</u> eigenvalue λ_1 of A. (The other eigenvalue(s) are complex.)
- (c) Find the eigenspace E_{λ_1} of A.

(d) Find <u>real</u> eigenvector(s) of A. (The other eigenvector(s) are complex.)