EIGENVALUES, EIGENVECTORS, EIGENSPACES: PART I [LARSON 7.1]

- EIGENVALUES \& EIGENVECTORS OF A SQUARE MATRIX (DEFINITION):

Let square matrix $A \in \mathbb{R}^{n \times n}$, non-zero vector $\mathbf{x} \in \mathbb{R}^{n}$, and scalar $\lambda \in \mathbb{R}$.
Then λ is an eigenvalue of $A \& \mathbf{x}$ is a corresponding eigenvector of A if

$$
\text { (EIG) } \quad A \mathbf{x}=\lambda \mathbf{x} \quad(\text { where } \mathbf{x} \neq \overrightarrow{\mathbf{0}})
$$

Moreover, the ordered pair (λ, \mathbf{x}) is called an eigenpair of A.

- MORE REGARDING EIGENVECTORS: Let square matrix $A \in \mathbb{R}^{n \times n}$. Then:
(i) A scalar multiple of an eigenvector is also an eigenvector:
(EIG1) $\quad(\lambda, \mathbf{x})$ is an eigenpair of $A \Longrightarrow(\lambda, \alpha \mathbf{x})$ is an eigenpair of $A \quad(\alpha \neq 0)$
(ii) The sum of two eigenvectors with same eigenvalue is also an eigenvector:

$$
\text { (EIG2) }\left(\lambda, \mathbf{x}_{1}\right),\left(\lambda, \mathbf{x}_{2}\right) \text { are eigenpairs of } A \Longrightarrow\left(\lambda, \mathbf{x}_{1}+\mathbf{x}_{2}\right) \text { is an eigenpair of } A
$$

- EIGENSPACES OF A SQUARE MATRIX:

Let square matrix $A \in \mathbb{R}^{n \times n}$ and $\lambda \in \mathbb{R}$ be an eigenvalue of A.
Then the λ-eigenspace of A is the following subspace of $\mathbb{R}^{n}: \quad E_{\lambda}:=\left\{\mathbf{x} \in \mathbb{R}^{n}:(\lambda, \mathbf{x})\right.$ is an eigenpair of $\left.A\right\} \cup\{\overrightarrow{\boldsymbol{0}}\}$
i.e. The λ-eigenspace is the set of all eigenvectors of A with eigenvalue λ together with the zero vector
(but of course $\overrightarrow{\mathbf{0}}$ is not an eigenvector.)

- CHARACTERISTIC POLYNOMIAL FOR A SQUARE MATRIX:

Let square matrix $A \in \mathbb{R}^{n \times n}$ and $\lambda \in \mathbb{R}$ be an eigenvalue of A.
Then the characteristic polynomial of A is defined to be: $\quad p_{A}(\lambda):=\operatorname{det}(\lambda I-A)=(-1)^{n} \operatorname{det}(A-\lambda I)$
Moreover, $p_{A}(\lambda)$ is a polynomial in λ of degree n.
Moreover, the equation $p_{A}(\lambda)=0$ is called the characteristic equation for A.

- EIGENVALUES, EIGENVECTORS \& THE CHARACTERISTIC POLYNOMIAL:

Let square matrix $A \in \mathbb{R}^{n \times n}$, non-zero vector $\mathbf{x} \in \mathbb{R}^{n}$, scalar $\lambda \in \mathbb{R}$. Then:
(i) λ is an eigenvalue of $A \Longleftrightarrow p_{A}(\lambda)=0 \Longleftrightarrow \operatorname{det}(A-\lambda I)=0$
(ii) \mathbf{x} is an eigenvector of $A \Longleftrightarrow(\lambda I-A) \mathbf{x}=\overrightarrow{\mathbf{0}} \Longleftrightarrow(A-\lambda I) \mathbf{x}=\overrightarrow{\mathbf{0}}$

- CASE I: DISTINCT REAL EIGENVALUES:

Let square matrix $A \in \mathbb{R}^{n \times n}$ s.t. all eigenvalues are real \& distinct. Then:
A has n eigenpairs $\left(\lambda_{1}, \mathbf{x}_{1}\right),\left(\lambda_{2}, \mathbf{x}_{2}\right), \cdots,\left(\lambda_{n}, \mathbf{x}_{n}\right)$ s.t. $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n}$.
i.e. Distinct eigenvalue λ_{k} has one distinct eigenvector \mathbf{x}_{k} s.t. $A \mathbf{x}_{k}=\lambda_{k} \mathbf{x}_{k}$.

- CASE I: DISTINCT REAL EIGENVALUES (PROCEDURE):

GIVEN: Square Matrix $A \in \mathbb{R}^{n \times n}$ s.t. all eigenvalues are real \& distinct.
TASK: Find the Eigenvalues λ_{k}, Eigenvectors \mathbf{x}_{k}, Eigenspaces $E_{\lambda_{k}}$ of A.
(1) Find Characteristic Polynomial $p_{A}(\lambda)=(-1)^{n} \operatorname{det}(A-\lambda I)$
(2) Solve Characteristic Eqn $\operatorname{det}(A-\lambda I)=0$ to find Eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$
(3) Find the Eigenspace for each Eigenvalue $\lambda_{k}: \quad E_{\lambda_{k}}=\operatorname{NulSp}\left(A-\lambda_{k} I\right)$
(4) Find an Eigenvector for each Eigenvalue $\lambda_{k}: \quad \mathbf{x}_{k}=\left(\right.$ basis vector for $\left.E_{\lambda_{k}}\right)$

SANITY CHECKS: $A \mathbf{x}_{k}=\lambda_{k} \mathbf{x}_{k}, \operatorname{dim}\left(E_{\lambda_{k}}\right)=1, \mathbf{x}_{k}$'s are distinct and non-zero

- EIGENVALUES OF TRIANGULAR \& DIAGONAL MATRICES:

The eigenvalues of a triangular matrix are the main diagonal entries.
The eigenvalues of a diagonal matrix are the main diagonal entries.

- MULTIPLICITIES OF EIGENVALUES (DEFINITION):

Let matrix $A \in \mathbb{R}^{n \times n}$ have (repeated) real eigenvalues $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{p}$, where $p<n$
Moreover, let A have the following factored characteristic polynomial

$$
p_{A}(\lambda)=\left(\lambda-\lambda_{1}\right)^{m_{1}}\left(\lambda-\lambda_{2}\right)^{m_{2}} \cdots\left(\lambda-\lambda_{p}\right)^{m_{p}}\left(\text { where } m_{1}, \ldots, m_{p} \in \mathbb{Z}_{+}\right)
$$

The algebraic multiplicity (AM) of eigenvalue λ_{k} is m_{k}.
The geometric multiplicity (GM) of eigenvalue λ_{k} is $\operatorname{dim}\left(E_{\lambda_{k}}\right)$.
i.e. $\operatorname{AM}\left[\lambda_{k}\right]:=m_{k}=\#$ occurrences of $\lambda_{k}=$ power of factor $\left(\lambda-\lambda_{k}\right)$ in $p_{A}(\lambda)$.
i.e. $\operatorname{GM}\left[\lambda_{k}\right]:=\operatorname{dim}\left(E_{\lambda_{k}}\right)=\#$ basis vectors of eigenspace $E_{\lambda_{k}}$.

- DEFECTIVE MATRICES (DEFINITION):

Let square matrix $A \in \mathbb{R}^{n \times n}$ have eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$, where $p \leq n$. Then:
A is a defective matrix if at least one eigenvalue λ_{k} satisfies $\mathrm{AM}\left[\lambda_{k}\right]>\operatorname{GM}\left[\lambda_{k}\right]$
i.e. There's fewer linearly indep. eigenvectors for λ_{k} than \# occurrences of λ_{k}.
e.g. Matrix $D=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ is defective since $\lambda_{1}=1$ and $\operatorname{AM}\left[\lambda_{1}\right]=3, \operatorname{GM}\left[\lambda_{1}\right]=2 \Longrightarrow \operatorname{AM}\left[\lambda_{1}\right]>\operatorname{GM}\left[\lambda_{1}\right]$
e.g. Matrix $F=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$ is defective since $\lambda_{1}=1$ and $\operatorname{AM}\left[\lambda_{1}\right]=3, \operatorname{GM}\left[\lambda_{1}\right]=1 \Longrightarrow \operatorname{AM}\left[\lambda_{1}\right]>\operatorname{GM}\left[\lambda_{1}\right]$

- CASE II: REPEATED REAL EIGENVALUES (PROCEDURE):

GIVEN: Square Matrix $A \in \mathbb{R}^{n \times n}$ s.t. all eigenvalues are real, some repeated.
TASK: Find the Eigenvalues λ_{k}, Eigenvectors \mathbf{x}_{k}, Eigenspaces $E_{\lambda_{k}}$ of A.
(1) Find Characteristic Polynomial $p_{A}(\lambda)=(-1)^{n} \operatorname{det}(A-\lambda I)$
(2) Solve Characteristic Eqn $p_{A}(\lambda)=0$ to find Eigenvalues $\lambda_{1}, \ldots, \lambda_{p}(p<n)$
(3) Find the Eigenspace for each Eigenvalue $\lambda_{k}: \quad E_{\lambda_{k}}=\operatorname{NulSp}\left(A-\lambda_{k} I\right)$
(4) Find an Eigenvector for each λ_{k}.

If distinct $\lambda_{k}: \quad \mathbf{x}_{k}=\left(\right.$ basis vector for $\left.E_{\lambda_{k}}\right)$
If repeated $\lambda_{k}: \quad \mathbf{x}_{k, 1}=\left(1^{\text {st }}\right.$ basis vector for $\left.E_{\lambda_{k}}\right), \mathbf{x}_{k, 2}=\left(2^{\text {nd }}\right.$ basis vector for $\left.E_{\lambda_{k}}\right), \ldots$
IMPORTANT: Repeated eigenvalues do not receive different indices!!

$$
\text { e.g. If } A \text { has eigenvalues } 4,2,2,2,-1,-1 \text {, then: } \lambda_{1}=-1, \lambda_{2}=2, \lambda_{3}=4
$$

- INVERTIBILITY \& EIGENVALUES: Let square matrix $A \in \mathbb{R}^{n \times n}$. Then:

$$
\begin{aligned}
A \text { is invertible } & \Longleftrightarrow \text { All eigenvalues } \lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}(p \leq n) \text { are non-zero } \\
A \text { is not invertible } & \Longleftrightarrow \text { At least one eigenvalue } \lambda_{k}=0
\end{aligned}
$$

EIGENVALUES, EIGENVECTORS, EIGENSPACES: PART III [LARSON 7.1]

- IRREDUCIBLE QUADRATICS (DEFN): Quadratic $a x^{2}+b x+c$ is an irreducible quadratic $\Longleftrightarrow b^{2}-4 a c<0$. i.e., the linear factors of an irreducible quadratic are complex (not real): (Recall that imaginary number $i=\sqrt{-1}$)
$\star x^{2}+1$ is irreducible since $x^{2}+1=(x-i)(x+i) \quad\left[b^{2}-4 a c=-4<0\right]$
$\star x^{2}-1$ is reducible since $x^{2}-1=(x-1)(x+1) \quad\left[b^{2}-4 a c=4>0\right]$
$\star x^{2}+2 x+2$ is irreducible since $x^{2}+2 x+2=[x+(1-i)][x+(1+i)] \quad\left[b^{2}-4 a c=-4<0\right]$

- FUNDAMENTAL THEOREM OF ALGEBRA (FTA):

Every $n^{\text {th }}$-degree polynomial with complex coefficients can be factored into n linear factors with complex coefficients, some of which may be repeated.

- COROLLARY TO THE FTA:

Every $n^{\text {th }}$-degree polynomial with real coefficients can be factored into linears \& irreducible quadratics with real coefficients.
What this corollary means for finding eigenvalues is that the characteristic polynomial can always be factored into:

$$
\text { Linear factors }\left(\lambda-\lambda_{k}\right) \quad \text { AND } \quad \text { Irreducible quadratics } \quad\left(\lambda^{2}+\alpha \lambda+\beta\right)
$$

e.g. If a 4×4 matrix A has characteristic poly $p_{A}(\lambda)=\left(\lambda^{2}+1\right)(\lambda-3)(\lambda+4)$,
then A has real eigenvalues $\lambda_{1}=-4, \lambda_{2}=3$ and two complex eigenvalues since $\lambda^{2}+1$ is an irreducible quadratic.

- CASE III: SOME COMPLEX EIGENVALUES (PROCEDURE):

GIVEN: Square Matrix $A \in \mathbb{R}^{n \times n}$ s.t. some eigenvalues are complex.
TASK: Find the real Eigenvalues λ_{k}, Eigenvectors \mathbf{x}_{k}, Eigenspaces $E_{\lambda_{k}}$ of A.
(1) Find Characteristic Polynomial $p_{A}(\lambda)=(-1)^{n} \operatorname{det}(A-\lambda I)$
(2) Solve Characteristic Eqn $p_{A}(\lambda)=0$, ignoring irreducible quadratics, to find real Eigenvalues.
(3) Find the Eigenspace for each real Eigenvalue $\lambda_{k}: E_{\lambda_{k}}=\operatorname{NulSp}\left(A-\lambda_{k} I\right)$
(4) Find an Eigenvector for each λ_{k}.

If distinct $\lambda_{k}: \quad \mathbf{x}_{k}=\left(\right.$ basis vector for $\left.E_{\lambda_{k}}\right)$
If repeated $\lambda_{k}: \quad \mathbf{x}_{k, 1}=\left(1^{s t}\right.$ basis vector for $\left.E_{\lambda_{k}}\right), \mathbf{x}_{k, 2}=\left(2^{n d}\right.$ basis vector for $\left.E_{\lambda_{k}}\right), \ldots$
IMPORTANT: Repeated eigenvalues do not receive different indices!!

$$
\text { e.g. If } A \text { has eigenvalues } 4,2,2,2,-1,-1 \text {, then: } \lambda_{1}=-1, \lambda_{2}=2, \lambda_{3}=4
$$

CASE IV: ALL COMPLEX EIGENVALUES (PROCEDURE):

The Good News: CASE IV will never be considered in this course!
The Bad News: CASE IV will show up in higher math courses (e.g. Differential Equations II)

Here are some 2×2 matrices that have all complex eigenvalues:

$$
\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right], \quad\left[\begin{array}{rr}
1 / 2 & -\sqrt{3} / 2 \\
\sqrt{3} / 2 & 1 / 2
\end{array}\right], \quad\left[\begin{array}{rr}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]
$$

The standard matrix for linear transformations representing certain rotations will have all complex eigenvalues. Of course, since all matrices considered will have real entries, a complex eigenvalue will have complex eigenvector(s).

EX 7.1.1: Let square matrix $A=\left[\begin{array}{rr}1 & 1 \\ 4 & -2\end{array}\right]$.
(a) Find the characteristic polynomial $p_{A}(\lambda)$.
(b) Find the eigenvalues $\lambda_{1}<\lambda_{2}$ of A.
(c) Find the eigenspaces $E_{\lambda_{1}}, E_{\lambda_{2}}$ of A.
(d) Find eigenvectors $\mathbf{x}_{1}, \mathbf{x}_{2}$ of A.

EX 7.1.2: Let square matrix $A=\left[\begin{array}{rrr}10 & -8 & -5 \\ 12 & -10 & -6 \\ -2 & 2 & 1\end{array}\right]$ with characteristic polynomial $p_{A}(\lambda)=\lambda(\lambda+1)(\lambda-2)$.
(a) Find the eigenvalues $\lambda_{1}<\lambda_{2}<\lambda_{3}$ of A.
(b) Find the eigenspaces $E_{\lambda_{1}}, E_{\lambda_{2}}, E_{\lambda_{3}}$ of A.
(c) Find eigenvectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ of A.

EX 7.1.3: Let sparse square matrix $A=\left[\begin{array}{rrr}-3 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -2 & 2\end{array}\right]$.
(a) Find the characteristic polynomial $p_{A}(\lambda)$.
(b) Find the eigenvalues $\lambda_{1}<\lambda_{2}<\lambda_{3}$ of A.
(c) Find the eigenspaces $E_{\lambda_{1}}, E_{\lambda_{2}}, E_{\lambda_{3}}$ of A.
(d) Find eigenvectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ of A.

EX 7.1.4: Let square matrix $A=\left[\begin{array}{rr}3 & 1 / 2 \\ -2 & 5\end{array}\right]$.
(a) Find the characteristic polynomial $p_{A}(\lambda)$.
(b) Find the eigenvalue λ_{1} of A. What is the algebraic multiplicity of λ_{1} ?
(c) Find the eigenspace $E_{\lambda_{1}}$ of A. What is the geometric multiplicity of λ_{1} ?
(d) Find eigenvector(s) of A. Is A defective?

EX 7.1.5: Let square matrix $A=\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right]$.
(a) Find the characteristic polynomial $p_{A}(\lambda)$.
(b) Find the eigenvalues $\lambda_{1}<\lambda_{2}$ of A. What are the algebraic multiplicities of λ_{1}, λ_{2} ?
(c) Find the eigenspaces $E_{\lambda_{1}}, E_{\lambda_{2}}$ of A. What are the geometric multiplicities of λ_{1}, λ_{2} ?
(d) Find eigenvector(s) of A. Is A defective?

EX 7.1.6: Let square matrix $A=\left[\begin{array}{lll}3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right]$.
(a) Find the characteristic polynomial $p_{A}(\lambda)$.
(b) Find the eigenvalues $\lambda_{1}<\lambda_{2}$ of A. What are the algebraic multiplicities of λ_{1}, λ_{2} ?
(c) Find the eigenspaces $E_{\lambda_{1}}, E_{\lambda_{2}}$ of A. What are the geometric multiplicities of λ_{1}, λ_{2} ?
(d) Find eigenvector(s) of A. Is A defective?

EX 7.1.7: Let square matrix $A=\left[\begin{array}{rrr}2 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right]$.
(a) Find the characteristic polynomial $p_{A}(\lambda)$.
(b) Find the real eigenvalue λ_{1} of A. (The other eigenvalue(s) are complex.)
(c) Find the eigenspace $E_{\lambda_{1}}$ of A.
(d) Find real eigenvector(s) of A. (The other eigenvector(s) are complex.)

