
EIGENVALUES, EIGENVECTORS, EIGENSPACES: PART I [LARSON 7.1]

• EIGENVALUES & EIGENVECTORS OF A SQUARE MATRIX (DEFINITION):

Let square matrix A ∈ Rn×n, non-zero vector x ∈ Rn, and scalar λ ∈ R.

Then λ is an eigenvalue of A & x is a corresponding eigenvector of A if

(EIG) Ax = λx (where x 6= ~0)

Moreover, the ordered pair (λ,x) is called an eigenpair of A.

• MORE REGARDING EIGENVECTORS: Let square matrix A ∈ Rn×n. Then:

(i) A scalar multiple of an eigenvector is also an eigenvector:

(EIG1) (λ,x) is an eigenpair of A =⇒ (λ, αx) is an eigenpair of A (α 6= 0)

(ii) The sum of two eigenvectors with same eigenvalue is also an eigenvector:

(EIG2) (λ,x1), (λ,x2) are eigenpairs of A =⇒ (λ,x1 + x2) is an eigenpair of A

• EIGENSPACES OF A SQUARE MATRIX:

Let square matrix A ∈ Rn×n and λ ∈ R be an eigenvalue of A.

Then the λ-eigenspace of A is the following subspace of Rn: Eλ := {x ∈ Rn : (λ,x) is an eigenpair of A} ∪ {~0}
i.e. The λ-eigenspace is the set of all eigenvectors of A with eigenvalue λ together with the zero vector

(but of course ~0 is not an eigenvector.)

• CHARACTERISTIC POLYNOMIAL FOR A SQUARE MATRIX:

Let square matrix A ∈ Rn×n and λ ∈ R be an eigenvalue of A.

Then the characteristic polynomial of A is defined to be: pA(λ) := det(λI −A) = (−1)ndet(A− λI)

Moreover, pA(λ) is a polynomial in λ of degree n.

Moreover, the equation pA(λ) = 0 is called the characteristic equation for A.

• EIGENVALUES, EIGENVECTORS & THE CHARACTERISTIC POLYNOMIAL:

Let square matrix A ∈ Rn×n, non-zero vector x ∈ Rn, scalar λ ∈ R. Then:

(i) λ is an eigenvalue of A ⇐⇒ pA(λ) = 0 ⇐⇒ det(A− λI) = 0

(ii) x is an eigenvector of A ⇐⇒ (λI −A)x = ~0 ⇐⇒ (A− λI)x = ~0

• CASE I: DISTINCT REAL EIGENVALUES:

Let square matrix A ∈ Rn×n s.t. all eigenvalues are real & distinct. Then:

A has n eigenpairs (λ1,x1), (λ2,x2), · · · , (λn,xn) s.t. λ1 < λ2 < · · · < λn.

i.e. Distinct eigenvalue λk has one distinct eigenvector xk s.t. Axk = λkxk.

• CASE I: DISTINCT REAL EIGENVALUES (PROCEDURE):

GIVEN: Square Matrix A ∈ Rn×n s.t. all eigenvalues are real & distinct.

TASK: Find the Eigenvalues λk, Eigenvectors xk, Eigenspaces Eλk of A.

(1) Find Characteristic Polynomial pA(λ) = (−1)ndet(A− λI)

(2) Solve Characteristic Eqn det(A− λI) = 0 to find Eigenvalues λ1, . . . , λn

(3) Find the Eigenspace for each Eigenvalue λk: Eλk = NulSp(A− λkI)

(4) Find an Eigenvector for each Eigenvalue λk: xk = (basis vector for Eλk )

SANITY CHECKS: Axk = λkxk, dim(Eλk ) = 1, xk’s are distinct and non-zero

• EIGENVALUES OF TRIANGULAR & DIAGONAL MATRICES:

The eigenvalues of a triangular matrix are the main diagonal entries.

The eigenvalues of a diagonal matrix are the main diagonal entries.
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EIGENVALUES, EIGENVECTORS, EIGENSPACES: PART II [LARSON 7.1]

• MULTIPLICITIES OF EIGENVALUES (DEFINITION):

Let matrix A ∈ Rn×n have (repeated) real eigenvalues λ1 < λ2 < · · · < λp, where p < n

Moreover, let A have the following factored characteristic polynomial

pA(λ) = (λ− λ1)m1(λ− λ2)m2 · · · (λ− λp)mp (where m1, . . . ,mp ∈ Z+)

The algebraic multiplicity (AM) of eigenvalue λk is mk.

The geometric multiplicity (GM) of eigenvalue λk is dim(Eλk ).

i.e. AM[λk] := mk = # occurrences of λk = power of factor (λ− λk) in pA(λ).

i.e. GM[λk] := dim(Eλk ) = # basis vectors of eigenspace Eλk .

• DEFECTIVE MATRICES (DEFINITION):

Let square matrix A ∈ Rn×n have eigenvalues λ1, λ2, . . . , λp, where p ≤ n. Then:

A is a defective matrix if at least one eigenvalue λk satisfies AM[λk] > GM[λk]

i.e. There’s fewer linearly indep. eigenvectors for λk than # occurrences of λk.

e.g. Matrix D =

 1 1 0

0 1 0

0 0 1

 is defective since λ1 = 1 and AM[λ1] = 3,GM[λ1] = 2 =⇒ AM[λ1] > GM[λ1]

e.g. Matrix F =

 1 1 0

0 1 1

0 0 1

 is defective since λ1 = 1 and AM[λ1] = 3,GM[λ1] = 1 =⇒ AM[λ1] > GM[λ1]

• CASE II: REPEATED REAL EIGENVALUES (PROCEDURE):

GIVEN: Square Matrix A ∈ Rn×n s.t. all eigenvalues are real, some repeated.

TASK: Find the Eigenvalues λk, Eigenvectors xk, Eigenspaces Eλk of A.

(1) Find Characteristic Polynomial pA(λ) = (−1)ndet(A− λI)

(2) Solve Characteristic Eqn pA(λ) = 0 to find Eigenvalues λ1, . . . , λp (p < n)

(3) Find the Eigenspace for each Eigenvalue λk: Eλk = NulSp(A− λkI)

(4) Find an Eigenvector for each λk.

If distinct λk: xk = (basis vector for Eλk )

If repeated λk: xk,1 = (1st basis vector for Eλk ), xk,2 = (2nd basis vector for Eλk ), . . .

IMPORTANT: Repeated eigenvalues do not receive different indices!!

e.g. If A has eigenvalues 4, 2, 2, 2,−1,−1, then: λ1 = −1, λ2 = 2, λ3 = 4

• INVERTIBILITY & EIGENVALUES: Let square matrix A ∈ Rn×n. Then:

A is invertible ⇐⇒ All eigenvalues λ1, λ2, . . . , λp (p ≤ n) are non-zero

A is not invertible ⇐⇒ At least one eigenvalue λk = 0
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EIGENVALUES, EIGENVECTORS, EIGENSPACES: PART III [LARSON 7.1]

• IRREDUCIBLE QUADRATICS (DEFN): Quadratic ax2+bx+c is an irreducible quadratic ⇐⇒ b2−4ac < 0.

i.e., the linear factors of an irreducible quadratic are complex (not real): (Recall that imaginary number i =
√
−1)

? x2 + 1 is irreducible since x2 + 1 = (x− i)(x+ i)
[
b2 − 4ac = −4 < 0

]
? x2 − 1 is reducible since x2 − 1 = (x− 1)(x+ 1)

[
b2 − 4ac = 4 > 0

]
? x2 + 2x+ 2 is irreducible since x2 + 2x+ 2 = [x+ (1− i)][x+ (1 + i)]

[
b2 − 4ac = −4 < 0

]
• FUNDAMENTAL THEOREM OF ALGEBRA (FTA):

Every nth-degree polynomial with complex coefficients can be factored into n linear factors with complex

coefficients, some of which may be repeated.

• COROLLARY TO THE FTA:

Every nth-degree polynomial with real coefficients can be factored into linears & irreducible quadratics

with real coefficients.

What this corollary means for finding eigenvalues is that the characteristic polynomial can always be factored into:

Linear factors (λ− λk) AND Irreducible quadratics (λ2 + αλ+ β).

e.g. If a 4× 4 matrix A has characteristic poly pA(λ) = (λ2 + 1)(λ− 3)(λ+ 4),

then A has real eigenvalues λ1 = −4, λ2 = 3 and two complex eigenvalues since λ2 +1 is an irreducible quadratic.

• CASE III: SOME COMPLEX EIGENVALUES (PROCEDURE):

GIVEN: Square Matrix A ∈ Rn×n s.t. some eigenvalues are complex.

TASK: Find the real Eigenvalues λk, Eigenvectors xk, Eigenspaces Eλk of A.

(1) Find Characteristic Polynomial pA(λ) = (−1)ndet(A− λI)

(2) Solve Characteristic Eqn pA(λ) = 0, ignoring irreducible quadratics, to find real Eigenvalues.

(3) Find the Eigenspace for each real Eigenvalue λk: Eλk = NulSp(A− λkI)

(4) Find an Eigenvector for each λk.

If distinct λk: xk = (basis vector for Eλk )

If repeated λk: xk,1 = (1st basis vector for Eλk ), xk,2 = (2nd basis vector for Eλk ), . . .

IMPORTANT: Repeated eigenvalues do not receive different indices!!

e.g. If A has eigenvalues 4, 2, 2, 2,−1,−1, then: λ1 = −1, λ2 = 2, λ3 = 4

CASE IV: ALL COMPLEX EIGENVALUES (PROCEDURE):

The Good News: CASE IV will never be considered in this course!

The Bad News: CASE IV will show up in higher math courses (e.g. Differential Equations II)

Here are some 2× 2 matrices that have all complex eigenvalues:[
0 −1

1 0

]
,

[
1/2 −

√
3/2

√
3/2 1/2

]
,

[
1/
√

2 −1/
√

2

1/
√

2 1/
√

2

]

The standard matrix for linear transformations representing certain rotations will have all complex eigenvalues.

Of course, since all matrices considered will have real entries, a complex eigenvalue will have complex eigenvector(s).
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EX 7.1.1: Let square matrix A =

[
1 1

4 −2

]
.

(a) Find the characteristic polynomial pA(λ).

(b) Find the eigenvalues λ1 < λ2 of A.

(c) Find the eigenspaces Eλ1 , Eλ2 of A.

(d) Find eigenvectors x1,x2 of A.
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EX 7.1.2: Let square matrix A =

 10 −8 −5

12 −10 −6

−2 2 1

 with characteristic polynomial pA(λ) = λ(λ+ 1)(λ− 2).

(a) Find the eigenvalues λ1 < λ2 < λ3 of A.

(b) Find the eigenspaces Eλ1 , Eλ2 , Eλ3 of A.

(c) Find eigenvectors x1,x2,x3 of A.
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EX 7.1.3: Let sparse square matrix A =

 −3 0 0

0 3 −1

0 −2 2

.

(a) Find the characteristic polynomial pA(λ).

(b) Find the eigenvalues λ1 < λ2 < λ3 of A.

(c) Find the eigenspaces Eλ1 , Eλ2 , Eλ3 of A.

(d) Find eigenvectors x1,x2,x3 of A.
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EX 7.1.4: Let square matrix A =

[
3 1/2

−2 5

]
.

(a) Find the characteristic polynomial pA(λ).

(b) Find the eigenvalue λ1 of A. What is the algebraic multiplicity of λ1?

(c) Find the eigenspace Eλ1 of A. What is the geometric multiplicity of λ1?

(d) Find eigenvector(s) of A. Is A defective?
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EX 7.1.5: Let square matrix A =

 3 0 0

0 3 0

0 0 4

.

(a) Find the characteristic polynomial pA(λ).

(b) Find the eigenvalues λ1 < λ2 of A. What are the algebraic multiplicities of λ1, λ2?

(c) Find the eigenspaces Eλ1 , Eλ2 of A. What are the geometric multiplicities of λ1, λ2?

(d) Find eigenvector(s) of A. Is A defective?
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EX 7.1.6: Let square matrix A =

 3 1 0

0 3 0

0 0 4

.

(a) Find the characteristic polynomial pA(λ).

(b) Find the eigenvalues λ1 < λ2 of A. What are the algebraic multiplicities of λ1, λ2?

(c) Find the eigenspaces Eλ1 , Eλ2 of A. What are the geometric multiplicities of λ1, λ2?

(d) Find eigenvector(s) of A. Is A defective?
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EX 7.1.7: Let square matrix A =

 2 0 0

0 0 −1

0 1 0

.

(a) Find the characteristic polynomial pA(λ).

(b) Find the real eigenvalue λ1 of A. (The other eigenvalue(s) are complex.)

(c) Find the eigenspace Eλ1 of A.

(d) Find real eigenvector(s) of A. (The other eigenvector(s) are complex.)
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