EX 7.2.3: Let matrix $A=\left[\begin{array}{rrr}-4 & 6 & 3 \\ -3 & 5 & 3 \\ 0 & 0 & -1\end{array}\right]$.

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
(-4-\lambda) & 6 & 3 \\
-3 & (5-\lambda) & 3 \\
0 & 0 & (-1-\lambda)
\end{array}\right|=(-1-\lambda)\left|\begin{array}{cc}
(-4-\lambda) & 6 \\
-3 & (5-\lambda)
\end{array}\right|=(-1-\lambda)[(-4-\lambda)(5-\lambda)-(6)(-3)] \\
& =(-1-\lambda)\left(\lambda^{2}-\lambda-2\right)=(-1-\lambda)(\lambda-2)(\lambda+1) \\
& \therefore p_{A}(\lambda)=\operatorname{det}(\lambda I-A)=(-1)^{3} \operatorname{det}(A-\lambda I)=(\lambda+1)^{2}(\lambda-2) \Longrightarrow \text { Eigenvalues of } A \text { are } \lambda_{1}=-1, \lambda_{2}=2 \\
& E_{\lambda_{1}}=\operatorname{NulSp}\left(A-\lambda_{1} I\right) \Longrightarrow A-\lambda_{1} I=A+I=\left[\begin{array}{rrr}
-3 & 6 & 3 \\
-3 & 6 & 3 \\
0 & 0 & 0
\end{array}\right] \\
& {\left[\left(A-\lambda_{1} I\right) \mid \overrightarrow{\mathbf{0}}\right]=\left[\begin{array}{rrr|}
-3 & 6 & 3
\end{array}\right]} \\
& -3
\end{aligned} \begin{gathered}
6 \\
0
\end{gathered} 0
$$

Columns $2 \& 3$ have no pivot

$$
\begin{gathered}
\begin{array}{c}
x_{2}, x_{3} \text { are free variables } \\
\text { Let } x_{2}=s, x_{3}=t \\
\text { Then } x_{1}-2 x_{2}-x_{3}=0
\end{array}
\end{gathered} \Longrightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 s+t \\
s \\
t
\end{array}\right]=s\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \therefore E_{\lambda_{1}}=\operatorname{span}\left\{\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\}
$$

$\Longrightarrow x_{1}=2 s+t$

$$
E_{\lambda_{2}}=\operatorname{NulSp}\left(A-\lambda_{2} I\right) \Longrightarrow A-\lambda_{2} I=A-2 I=\left[\begin{array}{rrr}
-6 & 6 & 3 \\
-3 & 3 & 3 \\
0 & 0 & -3
\end{array}\right]
$$

$$
\left[\left(A-\lambda_{2} I\right) \mid \overrightarrow{\mathbf{0}}\right]=\left[\begin{array}{rrr|r}
-6 & 6 & 3 & 0 \\
-3 & 3 & 3 & 0 \\
0 & 0 & -3 & 0
\end{array}\right] \xrightarrow[\left(-\frac{1}{3}\right) R_{3} \rightarrow R_{3}]{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{rrr|r}
-3 & 3 & 3 & 0 \\
-6 & 6 & 3 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \xrightarrow{(-2) R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{rrr|r}
-3 & 3 & 3 & 0 \\
0 & 0 & -3 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

$$
\xrightarrow[\left(-\frac{1}{3}\right) R_{2} \rightarrow R_{2}]{\left(-\frac{1}{3}\right) R_{1} \rightarrow R_{1}}\left[\begin{array}{rrr|r}
\boxed{1} & -1 & -1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \xrightarrow{(-1) R_{2}+R_{3} \rightarrow R_{3}}\left[\begin{array}{rrr|r}
\boxed{1} & -1 & -1 & 0 \\
0 & 0 & \boxed{1} & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{R_{2}+R_{1} \rightarrow R_{1}}\left[\begin{array}{rrr|r}
\left.\begin{array}{|rrr|r}
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], ~
\end{array}\right.
$$

Column 2 has no pivot
x_{2} is a free variable
Let $x_{2}=t$$\Longrightarrow\left\{\begin{array}{r}x_{1}-x_{2}=0 \\ x_{3}=0\end{array} \Longrightarrow\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}t \\ t \\ 0\end{array}\right]=t\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right] \therefore E_{\lambda_{2}}=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}\right.$
\therefore Eigenvectors of A are $\mathbf{x}_{1,1}=(2,1,0)^{T}, \mathbf{x}_{1,2}=(1,0,1)^{T}, \mathbf{x}_{2}=(1,1,0)^{T}$
Let $X=\left[\begin{array}{ccc}\mid & \mid & \mid \\ \mathbf{x}_{1,2} & \mathbf{x}_{1,1} & \mathbf{x}_{2} \\ \mid & \mid & \mid\end{array}\right]=\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0\end{array}\right] \Longrightarrow \Lambda=\left[\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{1} & 0 \\ 0 & 0 & \lambda_{2}\end{array}\right]=\left[\begin{array}{rrr}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2\end{array}\right]$
$\Longrightarrow[X \mid I]=\left[\begin{array}{ccc|ccc}\boxed{1} & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1\end{array}\right] \xrightarrow{\text { Gauss-Jordan }}\left[\begin{array}{rrr|rrr}\boxed{1} & 0 & 0 & 0 & 0 & 1 \\ 0 & \boxed{1} & 0 & 1 & -1 & -1 \\ 0 & 0 & \boxed{1} & -1 & 2 & 1\end{array}\right]=\left[I \mid X^{-1}\right] \quad\binom{$ Gauss-Jordan steps }{ omitted to save space }
$\therefore A=X \Lambda X^{-1}=\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{rrr}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2\end{array}\right]\left[\begin{array}{rrr}0 & 0 & 1 \\ 1 & -1 & -1 \\ -1 & 2 & 1\end{array}\right]$
NOTE: There's nothing special about this chosen ordering of eigenvector matrix X. Any other ordering of X is fine, provided the same consistent ordering of eigenvalue matrix Λ is used and, of course, the inverse X^{-1} will change. See the 7.2 Slides \& Outline for the details about different consistent orderings for $X \& \Lambda$.

