- SIMILAR MATRICES (DEFINITION): Let square matrices $A, B \in \mathbb{R}^{n \times n}$.

Then A is similar to B if $\exists M \in \mathbb{R}^{n \times n}$ s.t. M is invertible and $A=M^{-1} B M$

- SIMILAR MATRICES HAVE THE SAME EIGENVALUES: Let square matrices $A, B \in \mathbb{R}^{n \times n}$. Then:

$$
\text { If } A \text { and } B \text { are similar, then } A \text { and } B \text { have the same eigenvalues. }
$$

- DIAGONALIZABLE MATRIX ($1^{\text {st }}$ PRINCIPLES DEFINITION): Let square matrix $A \in \mathbb{R}^{n \times n}$.

Then A is diagonalizable $\Longleftrightarrow A$ is similar to an $n \times n$ diagonal matrix D.
i.e. A is diagonalizable if $\exists M \in \mathbb{R}^{n \times n}$ s.t. $M^{-1} A M=D$ where D is diagonal.

- EQUIVALENT CONDITION FOR DIAGONALIZABILITY: Let square matrix $A \in \mathbb{R}^{n \times n}$. Then:

$$
A \text { is diagonalizable } \Longleftrightarrow A \text { has } n \text { linearly independent eigenvectors. }
$$

- SUFFICIENT CONDITION FOR DIAGONALIZABILITY: Let square matrix $A \in \mathbb{R}^{n \times n}$. Then:

If A has n distinct eigenvalues, then A is diagonalizable.

- DIAGONALIZATION OF A SQUARE MATRIX (PROCEDURE):

GIVEN: Matrix $A \in \mathbb{R}^{n \times n}$ with all real eigenvalues, some possibly repeated.
TASK: Diagonalize Square Matrix A, if possible.
(1) Find the Eigenvalues of $A: \lambda_{1}, \ldots, \lambda_{n}$
(2) Find the Eigenspace $E_{\lambda_{k}}$ for each unique Eigenvalue λ_{k}.

If $\mathrm{AM}\left[\lambda_{k}\right]>\operatorname{GM}\left[\lambda_{k}\right]$, then A is not diagonalizable! STOP!!
(3) Find Eigenvector(s) for each unique Eigenvalue λ_{k}.
(4) Let matrix $X \in \mathbb{R}^{n \times n}$ s.t. its columns consist of the eigenvectors.
(5) Compute $X^{-1}: \quad[X \mid I] \xrightarrow{\text { Gauss-Jordan }}\left[I \mid X^{-1}\right]$
(6) Let diagonal matrix $\Lambda \in \mathbb{R}^{n \times n}$ s.t. the eigenvalues are on its main diagonal.

The order of eigenvectors in X determine the order of eigenvalues in Λ.
(7) Form the diagonalization of $A: \quad A=X \Lambda X^{-1}$

NOTATION: Λ is the capital Greek letter 'lambda'.

- POWERS OF A SQUARE MATRIX IN DIAGONALIZED FORM:

Let square matrix $A \in \mathbb{R}^{n \times n}$ such that A is diagonalizable: $A=X \Lambda X^{-1}$
Moreover, let $k \in \overline{\mathbb{Z}}_{+}$be a non-negative integer. Then: $A^{k}=X \Lambda^{k} X^{-1}$

- EIGENVALUES \& EIGENVECTORS OF THE INVERSE OF A MATRIX:

Let square matrix $A \in \mathbb{R}^{n \times n}$ be invertible. Then:

$$
(\lambda, \mathbf{x}) \text { is an eigenpair of } A \Longleftrightarrow\left(\frac{1}{\lambda}, \mathbf{x}\right) \text { is an eigenpair of } A^{-1}
$$

Suppose 3×3 matrix A has eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and eigenvectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$.
Then, A can be diagonalized as $A=X \Lambda X^{-1}$, where:

$$
\begin{aligned}
& X=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3} \\
\mid & \mid & \mid
\end{array}\right] \quad \text { and } \quad \Lambda=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right] \\
& X=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{x}_{1} & \mathbf{x}_{3} & \mathbf{x}_{2} \\
\mid & \mid & \mid
\end{array}\right] \text { and } \Lambda=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{3} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right] \\
& X=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{x}_{2} & \mathbf{x}_{1} & \mathbf{x}_{3} \\
\mid & \mid & \mid
\end{array}\right] \text { and } \Lambda=\left[\begin{array}{ccc}
\lambda_{2} & 0 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right] \\
& X=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{x}_{2} & \mathbf{x}_{3} & \mathbf{x}_{1} \\
\mid & \mid & \mid
\end{array}\right] \text { and } \Lambda=\left[\begin{array}{ccc}
\lambda_{2} & 0 & 0 \\
0 & \lambda_{3} & 0 \\
0 & 0 & \lambda_{1}
\end{array}\right] \\
& X=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{x}_{3} & \mathbf{x}_{1} & \mathbf{x}_{2} \\
\mid & \mid & \mid
\end{array}\right] \text { OR } \quad \text { and } \Lambda=\left[\begin{array}{ccc}
\lambda_{3} & 0 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right] \\
& X=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{x}_{3} & \mathbf{x}_{2} & \mathbf{x}_{1} \\
\mid & \mid & \mid
\end{array}\right] \quad \text { and } \quad \Lambda=\left[\begin{array}{ccc}
\lambda_{3} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{1}
\end{array}\right]
\end{aligned}
$$

Suppose 3×3 matrix A has eigenvalues λ_{1}, λ_{2} and eigenvectors $\mathbf{x}_{1,1}, \mathbf{x}_{1,2}, \mathbf{x}_{2}$.
Then, A can be diagonalized as $A=X \Lambda X^{-1}$, where:

$$
\begin{aligned}
& X=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{x}_{1,1} & \mathbf{x}_{1,2} & \mathbf{x}_{2} \\
\mid & \mid & \mid
\end{array}\right] \text { and } \Lambda=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right] \\
& X=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{x}_{1,2} & \mathbf{x}_{1,1} & \mathbf{x}_{2} \\
\mid & \mid & \mid
\end{array}\right] \text { ar - and } \Lambda=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right] \\
& X=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{x}_{1,1} & \mathbf{x}_{2} & \mathbf{x}_{1,2} \\
\mid & \mid & \mid
\end{array}\right] \text { and } \Lambda=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{1}
\end{array}\right] \\
& X=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{x}_{2} & \mathbf{x}_{1,1} & \mathbf{x}_{1,2} \\
\mid & \mid & \mid
\end{array}\right] \text { and } \Lambda=\left[\begin{array}{ccc}
\lambda_{2} & 0 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{1}
\end{array}\right]
\end{aligned}
$$

EX 7.2.1: Let matrix $A=\left[\begin{array}{cc}1 & -3 / 2 \\ -12 & -2\end{array}\right]$. Find a 2×2 invertible matrix X and 2×2 diagonal matrix Λ s.t. $A=X \Lambda X^{-1}$. If this is not possible, write $" A$ is not diagonalizable."

EX 7.2.2: Let matrix $A=\left[\begin{array}{cc}18 / 5 & -1 / 5 \\ 9 / 5 & 12 / 5\end{array}\right]$. Find a 2×2 invertible matrix X and 2×2 diagonal matrix Λ s.t. $A=X \Lambda X^{-1}$.
If this is not possible, write $" A$ is not diagonalizable."

EX 7.2.3: Let matrix $A=\left[\begin{array}{rrr}-4 & 6 & 3 \\ -3 & 5 & 3 \\ 0 & 0 & -1\end{array}\right]$. Find a 3×3 invertible matrix X and 3×3 diagonal matrix Λ s.t. $A=X \Lambda X^{-1}$.

