DIAGONALIZATION OF A SQUARE MATRIX [LARSON 7.2]

• SIMILAR MATRICES (DEFINITION): Let square matrices $A, B \in \mathbb{R}^{n \times n}$.

Then A is similar to B if $\exists M \in \mathbb{R}^{n \times n}$ s.t. M is invertible and $A = M^{-1}BM$

• SIMILAR MATRICES HAVE THE SAME EIGENVALUES: Let square matrices $A, B \in \mathbb{R}^{n \times n}$. Then:

If A and B are similar, then A and B have the same eigenvalues.

• DIAGONALIZABLE MATRIX (1st PRINCIPLES DEFINITION): Let square matrix $A \in \mathbb{R}^{n \times n}$.

Then A is **diagonalizable** \iff A is similar to an $n \times n$ diagonal matrix D.

i.e. A is diagonalizable if $\exists M \in \mathbb{R}^{n \times n}$ s.t. $M^{-1}AM = D$ where D is diagonal.

• EQUIVALENT CONDITION FOR DIAGONALIZABILITY: Let square matrix $A \in \mathbb{R}^{n \times n}$. Then:

A is diagonalizable \iff A has n linearly independent eigenvectors.

• SUFFICIENT CONDITION FOR DIAGONALIZABILITY: Let square matrix $A \in \mathbb{R}^{n \times n}$. Then:

If A has n <u>distinct</u> eigenvalues, then A is diagonalizable.

• DIAGONALIZATION OF A SQUARE MATRIX (PROCEDURE):

<u>GIVEN</u>: Matrix $A \in \mathbb{R}^{n \times n}$ with all <u>real</u> eigenvalues, some possibly repeated.

<u>TASK:</u> Diagonalize Square Matrix A, if possible.

- (1) Find the Eigenvalues of A: $\lambda_1, \ldots, \lambda_n$
- (2) Find the Eigenspace E_{λ_k} for each unique Eigenvalue λ_k . If $AM[\lambda_k] > GM[\lambda_k]$, then A is <u>not</u> diagonalizable! STOP!!
- (3) Find Eigenvector(s) for each unique Eigenvalue λ_k .
- (4) Let matrix $X \in \mathbb{R}^{n \times n}$ s.t. its columns consist of the eigenvectors.
- (5) Compute X^{-1} : $[X \mid I] \xrightarrow{Gauss-Jordan} [I \mid X^{-1}]$
- (6) Let diagonal matrix $\Lambda \in \mathbb{R}^{n \times n}$ s.t. the eigenvalues are on its main diagonal. The order of eigenvectors in X determine the order of eigenvalues in Λ .
- (7) Form the diagonalization of A: $A = X\Lambda X^{-1}$

<u>NOTATION:</u> Λ is the capital Greek letter 'lambda'.

• POWERS OF A SQUARE MATRIX IN DIAGONALIZED FORM:

Let square matrix $A \in \mathbb{R}^{n \times n}$ such that A is **diagonalizable**: $A = X\Lambda X^{-1}$ Moreover, let $k \in \overline{\mathbb{Z}}_+$ be a non-negative integer. Then: $A^k = X\Lambda^k X^{-1}$

• EIGENVALUES & EIGENVECTORS OF THE INVERSE OF A MATRIX:

Let square matrix $A \in \mathbb{R}^{n \times n}$ be invertible. Then:

$$(\lambda, \mathbf{x})$$
 is an eigenpair of $A \iff \left(\frac{1}{\lambda}, \mathbf{x}\right)$ is an eigenpair of A^{-1}

Suppose 3×3 matrix A has eigenvalues $\lambda_1, \lambda_2, \lambda_3$ and eigenvectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$.

Then, A can be diagonalized as $A = X\Lambda X^{-1}$, where:

$$X = \begin{bmatrix} | & | & | & | \\ \mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3} \\ | & | & | & | \end{bmatrix} \text{ and } \Lambda = \begin{bmatrix} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3} \end{bmatrix}$$

$$-- \text{OR} ----$$

$$X = \begin{bmatrix} | & | & | \\ \mathbf{x}_{1} & \mathbf{x}_{3} & \mathbf{x}_{2} \\ | & | & | & | \end{bmatrix} \text{ and } \Lambda = \begin{bmatrix} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{3} & 0 \\ 0 & 0 & \lambda_{2} \end{bmatrix}$$

$$-- \text{OR} ----$$

$$X = \begin{bmatrix} | & | & | \\ \mathbf{x}_{2} & \mathbf{x}_{1} & \mathbf{x}_{3} \\ | & | & | & | \end{bmatrix} \text{ and } \Lambda = \begin{bmatrix} \lambda_{2} & 0 & 0 \\ 0 & \lambda_{1} & 0 \\ 0 & 0 & \lambda_{3} \end{bmatrix}$$

$$-- \text{OR} ----$$

$$X = \begin{bmatrix} | & | & | \\ \mathbf{x}_{2} & \mathbf{x}_{3} & \mathbf{x}_{1} \\ | & | & | & | \end{bmatrix} \text{ and } \Lambda = \begin{bmatrix} \lambda_{2} & 0 & 0 \\ 0 & \lambda_{3} & 0 \\ 0 & 0 & \lambda_{1} \end{bmatrix}$$

$$-- \text{OR} ----$$

$$X = \begin{bmatrix} | & | & | \\ \mathbf{x}_{3} & \mathbf{x}_{1} & \mathbf{x}_{2} \\ | & | & | & | \end{bmatrix} \text{ and } \Lambda = \begin{bmatrix} \lambda_{3} & 0 & 0 \\ 0 & \lambda_{1} & 0 \\ 0 & 0 & \lambda_{2} \end{bmatrix}$$

$$-- \text{OR} ----$$

$$X = \begin{bmatrix} | & | & | \\ \mathbf{x}_{3} & \mathbf{x}_{2} & \mathbf{x}_{1} \\ | & | & | & | \end{bmatrix} \text{ and } \Lambda = \begin{bmatrix} \lambda_{3} & 0 & 0 \\ 0 & \lambda_{1} & 0 \\ 0 & 0 & \lambda_{2} \end{bmatrix}$$

Suppose 3×3 matrix A has eigenvalues λ_1, λ_2 and eigenvectors $\mathbf{x}_{1,1}, \mathbf{x}_{1,2}, \mathbf{x}_2$. Then, A can be diagonalized as $A = X\Lambda X^{-1}$, where:

©2015 Josh Engwer – Revised November 16, 2015

EX 7.2.1: Let matrix $A = \begin{bmatrix} 1 & -3/2 \\ -12 & -2 \end{bmatrix}$. Find a 2×2 invertible matrix X and 2×2 <u>diagonal</u> matrix Λ s.t. $A = X\Lambda X^{-1}$.

If this is not possible, write "A is $\underline{\mathrm{not}}$ diagonalizable."

EX 7.2.2: Let matrix $A = \begin{bmatrix} 18/5 & -1/5 \\ 9/5 & 12/5 \end{bmatrix}$. Find a 2×2 invertible matrix X and 2×2 <u>diagonal</u> matrix Λ s.t. $A = X\Lambda X^{-1}$.

If this is not possible, write "A is <u>not</u> diagonalizable."

	$\begin{bmatrix} -4 \end{bmatrix}$	6	3	
<u>EX 7.2.3:</u> Let matrix A	4 = -3	5	3	Find a 3×3 invertible matrix X and 3×3 <u>diagonal</u> matrix Λ s.t. $A = X\Lambda X^{-1}$
		0	-1	