EX 7.3.4: Let symmetric matrix $A=\left[\begin{array}{ll}4 & 2 \\ 2 & 4\end{array}\right]$.
(a) Find the characteristic polynomial $p_{A}(\lambda)$.
$\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}(4-\lambda) & 2 \\ 2 & (4-\lambda)\end{array}\right|=(4-\lambda)^{2}-(2)(2)=\left(16-8 \lambda+\lambda^{2}\right)-4=\lambda^{2}-8 \lambda+12 \Longrightarrow p_{A}(\lambda)=\lambda^{2}-8 \lambda+12$
(b) Find the eigenvalues $\lambda_{1}>\lambda_{2}$ of A.

$$
p_{A}(\lambda)=0 \Longrightarrow \lambda^{2}-8 \lambda+12=0 \stackrel{F A C T O R}{\Longrightarrow}(\lambda-2)(\lambda-6)=0 \Longrightarrow \lambda \in\{2,6\} \Longrightarrow \lambda_{1}=6, \lambda_{2}=2
$$

(c) Find the eigenspaces $E_{\lambda_{1}}, E_{\lambda_{2}}$ of A.
$E_{\lambda_{1}}=\operatorname{NulSp}\left(A-\lambda_{1} I\right) \Longrightarrow A-\lambda_{1} I=A-6 I=\left[\begin{array}{cc}(4-6) & 2 \\ 2 & (4-6)\end{array}\right]=\left[\begin{array}{rr}-2 & 2 \\ 2 & -2\end{array}\right]$
$\left[\left(A-\lambda_{1} I\right) \mid \overrightarrow{\mathbf{0}}\right]=\left[\begin{array}{rr|r}-2 & 2 & 0 \\ 2 & -2 & 0\end{array}\right] \xrightarrow{R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{rr|r}-2 & 2 & 0 \\ 0 & 0 & 0\end{array}\right] \xrightarrow{\left(-\frac{1}{2}\right) R_{1} \rightarrow R_{1}}\left[\begin{array}{rr|r}\begin{array}{|r|r}1 & -1 \\ 0 & 0\end{array} & 0\end{array}\right]$
Column 2 has no pivot
$\begin{gathered}x_{2} \text { is a free variable } \\ \text { Let } x_{2}=t\end{gathered}$$\Longrightarrow\left\{x_{1}=t \Longrightarrow\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}t \\ t\end{array}\right]=t\left[\begin{array}{l}1 \\ 1\end{array}\right] \quad \therefore \quad E_{\lambda_{1}}=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}\right.$
$E_{\lambda_{2}}=\operatorname{NulSp}\left(A-\lambda_{2} I\right) \Longrightarrow A-\lambda_{2} I=A-2 I=\left[\begin{array}{cc}(4-2) & 2 \\ 2 & (4-2)\end{array}\right]=\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$
$\left[\left(A-\lambda_{2} I\right) \mid \overrightarrow{\mathbf{0}}\right]=\left[\begin{array}{ll|l}2 & 2 & 0 \\ 2 & 2 & 0\end{array}\right] \xrightarrow{(-1) R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{ll|l}2 & 2 & 0 \\ 0 & 0 & 0\end{array}\right] \xrightarrow{\left(\frac{1}{2}\right) R_{1} \rightarrow R_{1}}\left[\begin{array}{cc|c}1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
$\begin{gathered}\text { Column } 2 \text { has no pivot } \\ x_{2} \text { is a free variable } \\ \text { Let } x_{2}=t\end{gathered}$$\Longrightarrow\left\{x_{1}=-t \Longrightarrow\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{r}-t \\ t\end{array}\right]=t\left[\begin{array}{r}-1 \\ 1\end{array}\right] \quad \therefore \quad E_{\lambda_{2}}=\operatorname{span}\left\{\left[\begin{array}{r}-1 \\ 1\end{array}\right]\right\}\right.$

$$
\text { Let } x_{2}=t
$$

(d) Find orthogonal eigenvectors $\mathbf{q}_{1}, \mathbf{q}_{2}$ of A.

$$
\begin{array}{ll}
\mathbf{q}_{1}=\left(\text { basis vector of } E_{\lambda_{1}}\right)=\left[\begin{array}{l}
1 \\
1
\end{array}\right] & \mathbf{q}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
\mathbf{q}_{2}=\left(\text { basis vector of } E_{\lambda_{2}}\right)=\left[\begin{array}{r}
-1 \\
1
\end{array}\right] & \mathbf{q}_{2}=\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
\end{array}
$$

(e) Find orthonormal eigenvectors $\hat{\mathbf{q}}_{1}, \hat{\mathbf{q}}_{2}$ of A.

$$
\begin{array}{ll}
\hat{\mathbf{q}}_{1}=\frac{\mathbf{q}_{1}}{\left\|\mathbf{q}_{1}\right\|_{2}}=\frac{1}{\sqrt{1^{2}+1^{2}}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right] & \therefore \hat{\mathbf{q}}_{1}=\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right] \\
\hat{\mathbf{q}}_{2}=\frac{\mathbf{q}_{2}}{\left\|\mathbf{q}_{2}\right\|_{2}}=\frac{1}{\sqrt{(-1)^{2}+1^{2}}}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]=\left[\begin{array}{r}
-1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right] & \therefore \hat{\mathbf{q}}_{2}=\left[\begin{array}{r}
-1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]
\end{array}
$$

(f) Factor A as $A=Q \Lambda Q^{T}$ where matrices Q is orthogonal and Λ is diagonal.

$$
\begin{aligned}
& Q= {\left[\begin{array}{cc}
\mid & \mid \\
\hat{\mathbf{q}}_{1} & \hat{\mathbf{q}}_{2} \\
\mid & \mid
\end{array}\right]=\left[\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right], \quad \Lambda=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]=\left[\begin{array}{ll}
6 & 0 \\
0 & 2
\end{array}\right] } \\
& \therefore \underbrace{\left[\begin{array}{cc}
4 & 2 \\
2 & 4
\end{array}\right]}_{A}=\underbrace{\left[\begin{array}{rr}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]}_{Q} \underbrace{\left[\begin{array}{cc}
6 & 0 \\
0 & 2
\end{array}\right]}_{\Lambda} \underbrace{\left[\begin{array}{rr}
1 / \sqrt{2} & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]}_{Q^{T}}
\end{aligned}
$$

EX 7.3.5: Let symmetric matrix $A=\left[\begin{array}{cc}2 & 2 \sqrt{3} \\ 2 \sqrt{3} & 6\end{array}\right]$.
(a) Find the characteristic polynomial $p_{A}(\lambda)$.
$\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}(2-\lambda) & 2 \sqrt{3} \\ 2 \sqrt{3} & (6-\lambda)\end{array}\right|=(2-\lambda)(6-\lambda)-(2 \sqrt{3})(2 \sqrt{3})=\left(12-8 \lambda+\lambda^{2}\right)-12=\lambda^{2}-8 \lambda \Longrightarrow p_{A}(\lambda)=\lambda^{2}-8 \lambda$
(b) Find the eigenvalues $\lambda_{1}>\lambda_{2}$ of A.
$p_{A}(\lambda)=0 \Longrightarrow \lambda^{2}-8 \lambda=0 \stackrel{F A C T O R}{\Longrightarrow} \lambda(\lambda-8)=0 \Longrightarrow \lambda \in\{8,0\} \Longrightarrow \lambda_{1}=8, \lambda_{2}=0$
(c) Find the eigenspaces $E_{\lambda_{1}}, E_{\lambda_{2}}$ of A.
$E_{\lambda_{1}}=\operatorname{NulSp}\left(A-\lambda_{1} I\right) \Longrightarrow A-\lambda_{1} I=A-8 I=\left[\begin{array}{cc}(2-8) & 2 \sqrt{3} \\ 2 \sqrt{3} & (6-8)\end{array}\right]=\left[\begin{array}{cc}-6 & 2 \sqrt{3} \\ 2 \sqrt{3} & -2\end{array}\right]$
$\left[\left(A-\lambda_{1} I\right) \mid \overrightarrow{\mathbf{0}}\right]=\left[\begin{array}{cc|c}-6 & 2 \sqrt{3} & 0 \\ 2 \sqrt{3} & -2 & 0\end{array}\right] \xrightarrow{\left(\frac{1}{\sqrt{3}}\right) R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{cc|c}-6 & 2 \sqrt{3} & 0 \\ 0 & 0 & 0\end{array}\right] \xrightarrow{\left(-\frac{1}{6}\right) R_{1} \rightarrow R_{1}}\left[\begin{array}{cc|c}\begin{array}{cc}1 & -1 / \sqrt{3} \\ 0 & 0\end{array} & 0\end{array}\right]$
$\begin{gathered}\text { Column } 2 \text { has no pivot } \\ x_{2} \text { is a free variable } \\ \text { Let } x_{2}=t \sqrt{3}\end{gathered}$$\Longrightarrow\left\{x_{1}=t \Longrightarrow\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{r}t \\ t \sqrt{3}\end{array}\right]=t\left[\begin{array}{r}1 \\ \sqrt{3}\end{array}\right] \quad \therefore \quad E_{\lambda_{1}}=\operatorname{span}\left\{\left[\begin{array}{r}1 \\ \sqrt{3}\end{array}\right]\right\}\right.$
$E_{\lambda_{2}}=\operatorname{NulSp}\left(A-\lambda_{2} I\right) \Longrightarrow A-\lambda_{2} I=A-0 \cdot I=A=\left[\begin{array}{cc}2 & 2 \sqrt{3} \\ 2 \sqrt{3} & 6\end{array}\right]$
$\left[\left(A-\lambda_{2} I\right) \mid \overrightarrow{\mathbf{0}}\right]=\left[\begin{array}{cc|c}2 & 2 \sqrt{3} & 0 \\ 2 \sqrt{3} & 6 & 0\end{array}\right] \xrightarrow{(-\sqrt{3}) R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{cc|c}2 & 2 \sqrt{3} & 0 \\ 0 & 0 & 0\end{array}\right] \xrightarrow{\left(\frac{1}{2}\right) R_{1} \rightarrow R_{1}}\left[\begin{array}{rr|r}\hline 1 & \sqrt{3} & 0 \\ 0 & 0 & 0\end{array}\right]$ $\begin{gathered}\text { Column } 2 \text { has no pivot } \\ x_{2} \text { is a free variable } \\ \text { Let } x_{2}=t\end{gathered}$$\Longrightarrow\left\{\begin{array}{l}x_{1}=-t \sqrt{3}\end{array} \Longrightarrow\left[\begin{array}{c}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}-t \sqrt{3} \\ t\end{array}\right]=t\left[\begin{array}{c}-\sqrt{3} \\ 1\end{array}\right] \quad \therefore\right.$
(d) Find orthogonal eigenvectors $\mathbf{q}_{1}, \mathbf{q}_{2}$ of A.

$$
\begin{array}{ll}
\mathbf{q}_{1}=\left(\text { basis vector of } E_{\lambda_{1}}\right)=\left[\begin{array}{c}
1 \\
\sqrt{3}
\end{array}\right] & \mathbf{q}_{1}=\left[\begin{array}{c}
1 \\
\sqrt{3}
\end{array}\right] \\
\mathbf{q}_{2}=\left(\text { basis vector of } E_{\lambda_{2}}\right)=\left[\begin{array}{c}
-\sqrt{3} \\
1
\end{array}\right] & \mathbf{q}_{2}=\left[\begin{array}{c}
-\sqrt{3} \\
1
\end{array}\right]
\end{array}
$$

(e) Find orthonormal eigenvectors $\hat{\mathbf{q}}_{1}, \hat{\mathbf{q}}_{2}$ of A.

$$
\begin{array}{ll}
\hat{\mathbf{q}}_{1}=\frac{\mathbf{q}_{1}}{\left\|\mathbf{q}_{1}\right\|_{2}}=\frac{1}{\sqrt{1^{2}+(\sqrt{3})^{2}}}\left[\begin{array}{c}
1 \\
\sqrt{3}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
1 \\
\sqrt{3}
\end{array}\right]=\left[\begin{array}{r}
1 / 2 \\
\sqrt{3} / 2
\end{array}\right] & \therefore \hat{\mathbf{q}}_{1}=\left[\begin{array}{r}
1 / 2 \\
\sqrt{3} / 2
\end{array}\right] \\
\hat{\mathbf{q}}_{2}=\frac{\mathbf{q}_{2}}{\left\|\mathbf{q}_{2}\right\|_{2}}=\frac{1}{\sqrt{(-\sqrt{3})^{2}+1^{2}}}\left[\begin{array}{c}
-\sqrt{3} \\
1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
-\sqrt{3} \\
1
\end{array}\right]=\left[\begin{array}{r}
-\sqrt{3} / 2 \\
1 / 2
\end{array}\right] & \therefore \hat{\mathbf{q}}_{2}=\left[\begin{array}{r}
-\sqrt{3} / 2 \\
1 / 2
\end{array}\right]
\end{array}
$$

(f) Factor A as $A=Q \Lambda Q^{T}$ where matrices Q is orthogonal and Λ is diagonal.

$$
\begin{aligned}
& Q=\left[\begin{array}{cc}
\mid & \mid \\
\hat{\mathbf{q}}_{1} & \hat{\mathbf{q}}_{2} \\
\mid & \mid
\end{array}\right]=\left[\begin{array}{rr}
1 / 2 & -\sqrt{3} / 2 \\
\sqrt{3} / 2 & 1 / 2
\end{array}\right], \quad \Lambda=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]=\left[\begin{array}{ll}
8 & 0 \\
0 & 0
\end{array}\right] \\
& \therefore \underbrace{\left[\begin{array}{cc}
2 & 2 \sqrt{3} \\
2 \sqrt{3} & 6
\end{array}\right]}_{A}=\underbrace{\left[\begin{array}{rr}
1 / 2 & -\sqrt{3} / 2 \\
\sqrt{3} / 2 & 1 / 2
\end{array}\right]}_{Q} \underbrace{\left[\begin{array}{cc}
8 & 0 \\
0 & 0
\end{array}\right]}_{\Lambda} \underbrace{\left[\begin{array}{rr}
1 / 2 & \sqrt{3} / 2 \\
-\sqrt{3} / 2 & 1 / 2
\end{array}\right]}_{Q^{T}}]
\end{aligned}
$$

EX 7.3.6: Let symmetric matrix $A=\left[\begin{array}{lll}2 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 0\end{array}\right]$.
(a) Find the characteristic polynomial $p_{A}(\lambda)$.

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
(2-\lambda) & 2 & 0 \\
2 & (2-\lambda) & 0 \\
0 & 0 & (0-\lambda)
\end{array}\right|=(-\lambda)\left|\begin{array}{cc}
(2-\lambda) & 2 \\
2 & (2-\lambda)
\end{array}\right|=(-\lambda)\left[(2-\lambda)^{2}-(2)(2)\right] \Longrightarrow p_{A}(\lambda)=\lambda^{2}(4-\lambda)
$$

(b) Find the eigenvalues $\lambda_{1}>\lambda_{2}$ of A.

$$
p_{A}(\lambda)=0 \Longrightarrow \lambda^{2}(4-\lambda)=0 \Longrightarrow \lambda \in\{4,0\} \Longrightarrow \lambda_{1}=4, \quad \lambda_{2}=0
$$

(c) Find the eigenspaces $E_{\lambda_{1}}, E_{\lambda_{2}}$ of A.

Columns $2 \& 3$ have no pivot x_{2}, x_{3} are free variables

$$
\begin{gathered}
\text { Let } x_{2}=t, x_{3}=s \\
\text { Then } x_{1}=-t
\end{gathered}
$$

$$
\Longrightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
-t \\
t \\
s
\end{array}\right]=t\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

$$
\therefore E_{\lambda_{2}}=\operatorname{span}\left\{\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

(d) Find orthonormal eigenvectors $\hat{\mathbf{q}}_{1}, \hat{\mathbf{q}}_{2,1}, \hat{\mathbf{q}}_{2,2}$ of A.

$$
\text { (Normalize each basis vector of } \left.E_{\lambda_{1}}, E_{\lambda_{2}}\right) \Longrightarrow \widehat{\mathbf{q}}_{1}=\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right], \quad \widehat{\mathbf{q}}_{2,1}=\left[\begin{array}{c}
-1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right], \quad \widehat{\mathbf{q}}_{2,2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

(e) Factor A as $A=Q \Lambda Q^{T}$ where matrices Q is orthogonal and Λ is diagonal.

$$
Q=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\hat{\mathbf{q}}_{1} & \hat{\mathbf{q}}_{2,1} & \hat{\mathbf{q}}_{2,2} \\
\mid & \mid & \mid
\end{array}\right]=\left[\begin{array}{ccc}
1 / \sqrt{2} & -1 / \sqrt{2} & 0 \\
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
0 & 0 & 1
\end{array}\right], \quad \Lambda=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right]=\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\therefore \underbrace{\left[\begin{array}{lll}
2 & 2 & 0 \\
2 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]}_{A}=\underbrace{\left[\begin{array}{ccc}
1 / \sqrt{2} & -1 / \sqrt{2} & 0 \\
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
0 & 0 & 1
\end{array}\right]}_{Q} \underbrace{\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]}_{\Lambda} \underbrace{\left[\begin{array}{ccc}
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
-1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
0 & 0 & 1
\end{array}\right]}_{Q^{T}}]
$$

$$
\begin{aligned}
& E_{\lambda_{1}}=\operatorname{NulSp}\left(A-\lambda_{1} I\right) \Longrightarrow A-\lambda_{1} I=A-4 I=\left[\begin{array}{ccc}
(2-4) & 2 & 0 \\
2 & (2-4) & 0 \\
0 & 0 & (0-4)
\end{array}\right]=\left[\begin{array}{rrr}
-2 & 2 & 0 \\
2 & -2 & 0 \\
0 & 0 & -4
\end{array}\right] \\
& {\left[\left(A-\lambda_{1} I\right) \mid \overrightarrow{\mathbf{0}}\right]=\left[\begin{array}{rrr|r}
-2 & 2 & 0 & 0 \\
2 & -2 & 0 & 0 \\
0 & 0 & -4 & 0
\end{array}\right] \xrightarrow{R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{rrr|r}
-2 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -4 & 0
\end{array}\right] \xrightarrow[\left(-\frac{1}{4}\right) R_{3} \rightarrow R_{3}]{\left(-\frac{1}{2}\right) R_{1} \rightarrow R_{1}}\left[\begin{array}{rrr|r}
1 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0
\end{array}\right]} \\
& \text { Column } 2 \text { has no pivot } \\
& x_{2} \text { is a free variable } \\
& \text { Let } x_{2}=t \\
& E_{\lambda_{1}}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right\} \\
& E_{\lambda_{2}}=\operatorname{NulSp}\left(A-\lambda_{2} I\right) \Longrightarrow A-\lambda_{2} I=A-0 \cdot I=A=\left[\begin{array}{lll}
2 & 2 & 0 \\
2 & 2 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& {\left[\left(A-\lambda_{2} I\right) \mid \overrightarrow{\mathbf{0}}\right]=\left[\begin{array}{lll|l}
2 & 2 & 0 & 0 \\
2 & 2 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{(-1) R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{lll|l}
2 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{\left(\frac{1}{2}\right) R_{1} \rightarrow R_{1}}\left[\begin{array}{ccc|c}
\left.\begin{array}{|ccc|c}
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{array}\right.}
\end{aligned}
$$

