SYMMETRIC MATRICES & ORTHOGONAL MATRICES [LARSON 7.3]

- SYMMETRIC MATRIX (DEFINITION): A square matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if $A^T = A$
- **<u>DIAGONAL MATRICES ARE SYMMETRIC</u>**: A diagonal matrix $D \in \mathbb{R}^{n \times n}$ is symmetric.
- SYMMETRIC MATRIX (PROPERTIES): Let symmetric matrix $S \in \mathbb{R}^{n \times n}$. Then the following all hold:
 - S is diagonalizable
 - All eigenvalues of S are real
 - If some eigenvalue λ_k repeats, its multiplicities match: $AM[\lambda_k] = GM[\lambda_k]$

i.e. If λ_k occurs j times, then λ_k has j linearly independent eigenvectors: $\mathbf{x}_{k,1}, \mathbf{x}_{k,2}, \ldots, \mathbf{x}_{k,j-1}, \mathbf{x}_{k,j}$

• ORTHOGONAL MATRIX (DEFINITION):

A square matrix $Q \in \mathbb{R}^{n \times n}$ is **orthogonal** if Q is invertible and $Q^{-1} = Q^T$

• DETERMINING IF A SQUARE MATRIX IS ORTHOGONAL:

A square matrix $Q \in \mathbb{R}^{n \times n}$ is **orthogonal** $\iff Q^T Q = I$

• AN ORTHOGONAL MATRIX HAS ORTHONORMAL COLUMNS:

A square matrix Q is **orthogonal** \iff its columns form an orthonormal set.

• ORTHOGONAL PRESERVATION THEOREM:

Consider the Euclidean inner product space $(\mathbb{R}^n, \langle \cdot, \cdot \rangle)$ where $\mathbf{v}, \mathbf{w}, \mathbf{x} \in \mathbb{R}^n$ and

Inner product $\langle \mathbf{v}, \mathbf{w} \rangle := \mathbf{v}^T \mathbf{w}$ Induced norm $||\mathbf{x}|| := \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ Induced metric $d(\mathbf{v}, \mathbf{w}) := ||\mathbf{v} - \mathbf{w}||$

Then orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ preserves inner products, norms & metrics:

(i) $\langle Q\mathbf{v}, Q\mathbf{w} \rangle = \langle \mathbf{v}, \mathbf{w} \rangle$, (ii) $||Q\mathbf{x}|| = ||\mathbf{x}||$, (iii) $d(Q\mathbf{v}, Q\mathbf{w}) = d(\mathbf{v}, \mathbf{w})$

• EIGENVECTORS OF A SYMMETRIC MATRIX:

Let symmetric matrix $S \in \mathbb{R}^{n \times n}$ have eigenpairs $(\lambda_1, \mathbf{x}_1), (\lambda_2, \mathbf{x}_2)$.

Then, if eigenvalues λ_1, λ_2 are distinct, then eigenvectors $\mathbf{x}_1, \mathbf{x}_2$ are orthogonal. i.e. If $\lambda_1 \neq \lambda_2$, then $\mathbf{x}_1 \perp \mathbf{x}_2$.

ORTHOGONALLY DIAGONALIZABLE MATRIX (DEFINITION): Let square matrix $A \in \mathbb{R}^{n \times n}$.

Then A is orthogonally diagonalizable if $\exists Q \in \mathbb{R}^{n \times n}$ s.t. Q is orthogonal and $Q^T A Q = D$ where D is diagonal.

SYMMETRIC MATRICES ARE ORTHOGONALLY DIAGONALIZABLE:

Square matrix A is orthogally diagonalizable \iff A is symmetric.

ORTHOGONALLY DIAGONALIZING A SYMMETRIC MATRIX (PROCEDURE):

<u>GIVEN</u>: Symmetric Matrix $S \in \mathbb{R}^{n \times n}$ with some possibly repeated eigenvalues.

 $\underline{\text{TASK:}} \quad \text{Orthogonally Diagonalize Symmetric Matrix } S.$

- (1) Find the Eigenvalues of $S: \lambda_1, \ldots, \lambda_n$
- (2) Find the Eigenspace E_{λ_k} for each unique Eigenvalue λ_k .
- (3) Find <u>Unit</u> Eigenvector(s) $\widehat{\mathbf{q}}_k$ for each unique Eigenvalue λ_k : $\widehat{\mathbf{q}}_k = \frac{\mathbf{q}_k}{||\mathbf{q}_k||}$ If $\mathrm{AM}[\lambda_k] \geq 2$, then apply Gram-Schmidt on the eigenvectors for λ_k .
- (4) Let matrix $Q \in \mathbb{R}^{n \times n}$ s.t. its columns consist of the unit eigenvectors.
- (5) Let <u>diagonal</u> matrix $\Lambda \in \mathbb{R}^{n \times n}$ s.t. the eigenvalues are on its main diagonal. The order of eigenvectors in Q determine the order of eigenvalues in Λ .
- (6) Form the diagonalization of S: $S = Q\Lambda Q^T$

^{©2015} Josh Engwer – Revised October 15, 2022

Let 3×3 symmetric matrix S have eigenvalues $\lambda_1, \lambda_2, \lambda_3$ & eigenvectors $\widehat{\mathbf{q}}_1, \widehat{\mathbf{q}}_2, \widehat{\mathbf{q}}_3$. Then, S can be orthogonally diagonalized as $S = Q \Lambda Q^T$, where:

Let 3×3 symmetric matrix S have eigenvalues λ_1, λ_2 & eigenvectors $\widehat{\mathbf{q}}_{1,1}, \widehat{\mathbf{q}}_{1,2}, \widehat{\mathbf{q}}_2$. Then, S can be orthogonally diagonalized as $S = Q\Lambda Q^T$, where:

©2015 Josh Engwer – Revised October 15, 2022

<u>EX 7.3.1</u>: Which of the following 4×4 matrices are symmetric?

$$A = \begin{bmatrix} 1 & 4 & 5 & 5 \\ 4 & 7 & 0 & 9 \\ 5 & 9 & 0 & 1 \\ 5 & 9 & 1 & 8 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 4 & 5 & 5 \\ 4 & 7 & 0 & 9 \\ 5 & 0 & 0 & 1 \\ 5 & 9 & 1 & 8 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 2 & 6 & 0 & 9 \\ 0 & 0 & 0 & 1 \\ 0 & 9 & 1 & 8 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad E = \begin{bmatrix} 0 & 0 & 0 & 3 \\ 0 & 0 & 7 & 0 \\ 3 & 0 & 0 & 0 \end{bmatrix}$$

<u>EX 7.3.2</u> Show that the following matrices are orthogonal:

$$Q_1 = \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}, \qquad Q_2 = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{3} & -1/\sqrt{6} \\ 1/\sqrt{2} & -1/\sqrt{3} & 1/\sqrt{6} \\ 0 & 1/\sqrt{3} & 2/\sqrt{6} \end{bmatrix}$$

<u>EX 7.3.3</u>: Let A be an arbitrary $m \times n$ matrix. Show that $A^T A$ and AA^T are symmetric.

<u>EX 7.3.4</u>: Let symmetric matrix $A = \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix}$.

- (a) Find the characteristic polynomial $p_A(\lambda)$.
- (b) Find the eigenvalues $\lambda_1 > \lambda_2$ of A.
- (c) Find the eigenspaces $E_{\lambda_1}, E_{\lambda_2}$ of A.

(d) Find orthogonal eigenvectors $\mathbf{q}_1, \mathbf{q}_2$ of A.

- (e) Find orthonormal eigenvectors $\hat{\mathbf{q}}_1, \hat{\mathbf{q}}_2$ of A.
- (f) Factor A as $A=Q\Lambda Q^T$ where matrices Q is orthogonal and Λ is diagonal.

EX 7.3.5: Let symmetric matrix $A = \begin{bmatrix} 2 & 2\sqrt{3} \\ 2\sqrt{3} & 6 \end{bmatrix}$.

- (a) Find the characteristic polynomial $p_A(\lambda)$.
- (b) Find the eigenvalues $\lambda_1 > \lambda_2$ of A.
- (c) Find the eigenspaces $E_{\lambda_1}, E_{\lambda_2}$ of A.

(d) Find orthogonal eigenvectors $\mathbf{q}_1, \mathbf{q}_2$ of A.

- (e) Find orthonormal eigenvectors $\hat{\mathbf{q}}_1, \hat{\mathbf{q}}_2$ of A.
- (f) Factor A as $A=Q\Lambda Q^T$ where matrices Q is orthogonal and Λ is diagonal.

		2	2	0]
EX 7.3.6:	Let symmetric matrix $A =$	2	2	0	
		0	0	0	

- (a) Find the characteristic polynomial $p_A(\lambda)$.
- (b) Find the eigenvalues $\lambda_1 > \lambda_2$ of A.
- (c) Find the eigenspaces $E_{\lambda_1}, E_{\lambda_2}$ of A.

- (d) Find orthonormal eigenvectors $\hat{\mathbf{q}}_{1}, \hat{\mathbf{q}}_{2,1}, \hat{\mathbf{q}}_{2,2}$ of A.
- (e) Factor A as $A = Q \Lambda Q^T$ where matrices Q is orthogonal and Λ is diagonal.

^{©2022} Josh Engwer – Revised October 15, 2022