HOUSEHOLDER REFLECTORS OF VECTORS IN \mathbb{R}^{2}

- HOUSEHOLDER REFLECTORS OF 2D VECTORS IN (QUADRANT I) (VISUALLY):

- HOUSEHOLDER REFLECTORS OF 2D VECTORS IN (QUADRANT II) (VISUALLY):

- HOUSEHOLDER REFLECTORS OF 2D VECTORS IN (QUADRANT III) (VISUALLY):

- HOUSEHOLDER REFLECTORS OF 2D VECTORS IN (QUADRANT IV) (VISUALLY):

How to reflect a non-zero vector \mathbf{u} onto the same $/$ other x_{1}-semiaxis, denoted as $\mathbf{u}_{+} / \mathbf{u}_{-}$:

1. Observe that $\mathbf{u}_{+} / \mathbf{u}_{-}= \pm\|\mathbf{u}\|_{2} \cdot \hat{\mathbf{e}}_{1}$ since reflections do not alter magnitude.
2. Form bisecting ray, ℓ_{+} / ℓ_{-}, from origin outward into the same / other x_{1}-halfplane.
3. Form \& normalize vector $\mathbf{h}_{+} / \mathbf{h}_{-}$orthogonal to ℓ_{+} / ℓ_{-}and pointing toward same x_{2}-halfplane as \mathbf{u}.
4. Project vector \mathbf{u} onto unit vector $\hat{\mathbf{h}}_{+} / \hat{\mathbf{h}}_{-}$.
5. Subtract twice this projection from vector \mathbf{u}, resulting in $\mathbf{u}_{+}=\mathbf{u}-2 \cdot \operatorname{proj}_{\hat{h}_{+}} \mathbf{u} / \mathbf{u}_{-}=\mathbf{u}-2 \cdot \operatorname{proj}_{\hat{\mathbf{h}}_{-}} \mathbf{u}$.

- SIGNUM FUNCTION (DEFINITION):

$$
\operatorname{sign}(x):=\left\{\begin{aligned}
+1 & , \text { if } x>0 \\
0 & , \text { if } x=0 \\
-1 & , \text { if } x<0
\end{aligned}\right.
$$

- UPPER-SIGNUM FUNCTION (DEFINITION):

$$
\overline{\operatorname{sign}}(x):= \begin{cases}+1 & , \text { if } x \geq 0 \\ -1 & , \text { if } x<0\end{cases}
$$

- LOWER-SIGNUM FUNCTION (DEFINITION):

$$
\underline{\operatorname{sign}}(x):= \begin{cases}+1 & , \text { if } x>0 \\ -1 & , \text { if } x \leq 0\end{cases}
$$

- SAME-SEMIAXIS HOUSEHOLDER REFLECTORS IN \mathbb{R}^{n} (PROCEDURE): Let vector $\mathbf{u} \in \mathbb{R}^{n}$. Then:
(1) $\mathbf{h}_{+}=\mathbf{u}-\overline{\operatorname{sign}}\left(u_{1}\right) \cdot\|\mathbf{u}\|_{2} \cdot \hat{\mathbf{e}}_{1}$
(2) $\hat{\mathbf{h}}_{+}=\mathbf{h}_{+} /\left\|\mathbf{h}_{+}\right\|_{2}$
(3) $\ell_{+}=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{h}_{+} \cdot \mathbf{x}=0\right\}$
(4) $\bar{P}_{+}=\hat{\mathbf{h}}_{+} \hat{\mathbf{h}}_{+}^{T}$
(5) $H_{+}=I-2 \bar{P}_{+}$
(6) $\mathbf{u}_{+}=H_{+} \mathbf{u}=\mathbf{u}-2 \cdot \operatorname{proj}_{\hat{\mathbf{h}}_{+}} \mathbf{u}$
- OTHER-SEMIAXIS HOUSEHOLDER REFLECTORS IN \mathbb{R}^{n} (PROCEDURE): Let vector $\mathbf{u} \in \mathbb{R}^{n}$. Then:
(1) $\mathbf{h}_{-}=\mathbf{u}+\overline{\operatorname{sign}}\left(u_{1}\right) \cdot\|\mathbf{u}\|_{2} \cdot \hat{\mathbf{e}}_{1}$
(2) $\quad \hat{\mathbf{h}}_{-}=\mathbf{h}_{-} /\left\|\mathbf{h}_{-}\right\|_{2}$
(3) $\quad \ell_{-}=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{h}_{-} \cdot \mathbf{x}=0\right\}$
(4) $\bar{P}_{-}=\hat{\mathbf{h}}_{-} \hat{\mathbf{h}}_{-}^{T}$
(5) $H_{-}=I-2 \bar{P}_{-}$
(6) $\mathbf{u}_{-}=H_{-} \mathbf{u}=\mathbf{u}-2 \cdot \operatorname{proj}_{\hat{\mathbf{h}}_{-}} \mathbf{u}$
- HOUSEHOLDER REFLECTORS (PROPERTIES): Let $H:=\hat{\mathbf{h}} \hat{\mathbf{h}}^{T} \in \mathbb{R}^{n \times n}$ be a Householder Reflector matrix.

Then:
$\begin{array}{lc}\text { (1) } H \text { is symmetric: } & H^{T}=H \\ \text { (2) } H \text { is orthogonal: } & H^{-1}=H^{T} \\ \text { (3) } H \text { is involutory: } & H^{2}=I\end{array}$
(4) $H \hat{\mathbf{h}}=-\hat{\mathbf{h}}$
(5) $H \mathbf{h}_{\perp}=\mathbf{h}_{\perp} \forall \mathbf{h}_{\perp} \in\{\hat{\mathbf{h}}\}^{\perp}$
(6) The eigenvalues of H are: $\quad-1 ; \underbrace{1,1, \cdots, 1}_{n-1}$
(7) $\operatorname{det}(H)=-1$

FULL $Q R$ FACTORIZATION VIA HOUSEHOLDER REFLECTORS
Suppose $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$. Then:

$$
\begin{aligned}
& \mathbf{a}_{1}:=\left(a_{11}, a_{21}\right)^{T} \Longrightarrow \mathbf{h}_{1}=\mathbf{a}_{1} \pm \overline{\operatorname{sign}}\left(a_{11}\right) \cdot\left\|\mathbf{a}_{1}\right\|_{2} \cdot \hat{\mathbf{e}}_{1} \Longrightarrow \hat{\mathbf{h}}_{1}=\mathbf{h}_{1} /\left\|\mathbf{h}_{1}\right\|_{2} \\
& \Longrightarrow H_{1}^{\prime}=I-2 \hat{\mathbf{h}}_{1} \hat{\mathbf{h}}_{1}^{T} \Longrightarrow H_{1}=\left[\begin{array}{cc}
I_{0 \times 0} & \\
& H_{1}^{\prime}
\end{array}\right]=H_{1}^{\prime} \Longrightarrow H_{1} A=\left[\begin{array}{cc}
a_{11}^{\prime} & a_{12}^{\prime} \\
0 & a_{22}^{\prime}
\end{array}\right]=R \\
& \Longrightarrow Q=\left(H_{1}\right)^{-1}=H_{1}^{-1} \stackrel{O R T H}{=} H_{1}^{T} \stackrel{S Y M}{=} H_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Suppose } A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right] \text {. Then: } \\
& \mathbf{a}_{1}:=\left(a_{11}, a_{21}, a_{31}\right)^{T} \Longrightarrow \mathbf{h}_{1}=\mathbf{a}_{1} \pm \overline{\operatorname{sign}}\left(a_{11}\right) \cdot\left\|\mathbf{a}_{1}\right\|_{2} \cdot \hat{\mathbf{e}}_{1} \Longrightarrow \hat{\mathbf{h}}_{1}=\mathbf{h}_{1} /\left\|\mathbf{h}_{1}\right\|_{2} \\
& \Longrightarrow H_{1}^{\prime}=I-2 \hat{\mathbf{h}}_{1} \hat{\mathbf{h}}_{1}^{T} \Longrightarrow H_{1}=\left[\begin{array}{ll}
I_{0 \times 0} & \\
& H_{1}^{\prime}
\end{array}\right]=H_{1}^{\prime} \Longrightarrow H_{1} A=\left[\begin{array}{cc}
a_{11}^{\prime} & a_{12}^{\prime} \\
0 & a_{22}^{\prime} \\
0 & a_{32}^{\prime}
\end{array}\right] \\
& \mathbf{a}_{1}^{\prime}:=\left(a_{22}^{\prime}, a_{32}^{\prime}\right)^{T} \Longrightarrow \mathbf{h}_{2}=\mathbf{a}_{1}^{\prime} \pm \overline{\operatorname{sign}}\left(a_{22}^{\prime}\right) \cdot\left\|\mathbf{a}_{1}^{\prime}\right\|_{2} \cdot \hat{\mathbf{e}}_{1} \Longrightarrow \hat{\mathbf{h}}_{2}=\mathbf{h}_{2} /\left\|\mathbf{h}_{2}\right\|_{2} \\
& \Longrightarrow H_{2}^{\prime}=I-2 \hat{\mathbf{h}}_{2} \hat{\mathbf{h}}_{2}^{T} \Longrightarrow H_{2}=\left[\begin{array}{ll}
I_{1 \times 1} & \\
& H_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & \\
& H_{2}^{\prime}
\end{array}\right] \Longrightarrow H_{2} H_{1} A=\left[\begin{array}{cc}
a_{11}^{\prime} & a_{12}^{\prime} \\
0 & a_{22}^{\prime \prime} \\
0 & 0
\end{array}\right]=R \\
& \Longrightarrow Q=\left(H_{2} H_{1}\right)^{-1}=H_{1}^{-1} H_{2}^{-1} \stackrel{O R T H}{=} H_{1}^{T} H_{2}^{T} \stackrel{S Y M}{=} H_{1} H_{2}
\end{aligned}
$$

- WHICH HOUSEHOLDER REFLECTOR??: Given the Householder Reflector with \pm symbol, which sign to pick:

$$
\mathbf{h}_{1}=\mathbf{a}_{1}^{(1)} \pm \overline{\operatorname{sign}}\left(a_{11}^{(1)}\right) \cdot\left\|\mathbf{a}_{1}^{(1)}\right\|_{2} \cdot \hat{\mathbf{e}}_{1}
$$

If computing by hand (using exact arithmetic), either + or - is fine, so pick one.
If computing by computer, always pick the + (i.e. always pick \mathbf{h}_{-}) because the result will be more accurate.

- FULL $Q R$ FACTORIZATION VIA HOUSEHOLDER REFLECTORS (PROCEDURE):

GIVEN: Tall or square ($m \geq n$) full column rank matrix $A_{m \times n}$ with columns \mathbf{a}_{k}.
TASK: Factor $A=Q R$ where $Q_{m \times m}$ has orthonormal columns $\widehat{\mathbf{q}}_{k}$ and $R_{m \times n}$ is upper triangular.
(0) For each upcoming \pm : by computer, always pick + ; by hand, either + or - is fine, so pick one.
(1) Build Householder Reflector, H_{1}, that nullifies sub-diagonal $1^{\text {st }}$ column of A :

$$
\begin{aligned}
& \mathbf{a}_{1}^{(1)}:=\left(a_{11}, \cdots, a_{m 1}\right)^{T} \Longrightarrow \mathbf{h}_{1}=\mathbf{a}_{1}^{(1)} \pm \overline{\operatorname{sign}}\left(a_{11}^{(1)}\right) \cdot\left\|\mathbf{a}_{1}^{(1)}\right\|_{2} \cdot \hat{\mathbf{e}}_{1} \\
& \Longrightarrow H_{1}^{\prime}=I-2 \hat{\mathbf{h}}_{1} \hat{\mathbf{h}}_{1}^{T} \Longrightarrow \mathbf{h}_{1} /\left\|\mathbf{h}_{1}\right\|_{2} \\
& \Longrightarrow H_{1}=\left[\begin{array}{cc}
I_{0 \times 0} & \\
& H_{1}^{\prime}
\end{array}\right]=H_{1}^{\prime}
\end{aligned}
$$

(2) For each $j=2, \cdots, n$:

Build Householder Reflector, H_{j}, that nullifies sub-diagonal $j^{\text {th }}$ column of $H_{j} H_{j-1} \cdots H_{2} H_{1} A:=C_{j}$:

$$
\begin{aligned}
& \mathbf{c}_{1}^{(j)}:=\left(c_{j j}^{(j)}, \cdots, c_{m j}^{(j)}\right)^{T} \Longrightarrow \mathbf{h}_{j}=\mathbf{c}_{1}^{(j)} \pm \overline{\operatorname{sign}}\left(c_{j j}^{(j)}\right) \cdot\left\|\mathbf{c}_{1}^{(j)}\right\|_{2} \cdot \hat{\mathbf{e}}_{1} \Longrightarrow \hat{\mathbf{h}}_{j}=\mathbf{h}_{j} /\left\|\mathbf{h}_{j}\right\|_{2} \\
& \Longrightarrow H_{j}^{\prime}=I-2 \hat{\mathbf{h}}_{j} \hat{\mathbf{h}}_{j}^{T} \Longrightarrow H_{j}=\left[\begin{array}{rl}
I_{(j-1) \times(j-1)} & \\
& H_{j}^{\prime}
\end{array}\right]
\end{aligned}
$$

(3) $R=H_{n} H_{n-1} \cdots H_{2} H_{1} A$
(4) $Q=H_{1} H_{2} \cdots H_{n-1} H_{n}$
S.J. Leon, Linear Algebra with Applications, $9^{\text {th }}$ Ed., Pearson, 2015.
A.S. Householder, "Unitary Triangularization of a Nonsymmetric Matrix", Journal of the ACM, 5 (1958), 339-342.

Let $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right] \quad \Longrightarrow \quad H_{1}=\left[\begin{array}{ll}I_{0 \times 0} & \\ & H_{1}^{\prime}\end{array}\right]=\left[H_{1}^{\prime}\right]$
$\Longrightarrow \quad H_{1} A=\left[\begin{array}{cc}a_{11}^{\prime} & a_{12}^{\prime} \\ 0 & a_{22}^{\prime}\end{array}\right] \quad=\quad R$
$\Longrightarrow Q=\left(H_{1}\right)^{-1}=H_{1}^{-1} \stackrel{O R T H}{=} H_{1}^{T} \stackrel{S Y M}{=} H_{1}$

Let $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right] \quad \Longrightarrow \quad H_{1}=\left[\begin{array}{ll}I_{0 \times 0} & \\ & H_{1}^{\prime}\end{array}\right]=\left[H_{1}^{\prime}\right]$
$\Longrightarrow \quad H_{1} A=\left[\begin{array}{cc}a_{11}^{\prime} & a_{12}^{\prime} \\ 0 & a_{22}^{\prime} \\ 0 & a_{32}^{\prime}\end{array}\right] \quad \Longrightarrow \quad H_{2}=\left[\begin{array}{ll}I_{1 \times 1} & \\ & H_{2}^{\prime}\end{array}\right]=\left[\begin{array}{cc}1 & \\ & H_{2}^{\prime}\end{array}\right]$
$\Longrightarrow \quad H_{2} H_{1} A=\left[\begin{array}{cc}a_{11}^{\prime} & a_{12}^{\prime} \\ 0 & a_{22}^{\prime \prime} \\ 0 & 0\end{array}\right]=R$
$\Longrightarrow Q=\left(H_{2} H_{1}\right)^{-1}=H_{1}^{-1} H_{2}^{-1} \stackrel{O R T H}{=} H_{1}^{T} H_{2}^{T} \stackrel{S \underline{Y} M}{=} H_{1} H_{2}$

$$
\left.\begin{array}{cc}
\text { Let } A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33} \\
a_{41} & a_{42} & a_{43}
\end{array}\right] & \Longrightarrow \quad H_{1}=\left[\begin{array}{ll}
I_{0 \times 0} & \\
& H_{1}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
H_{1}^{\prime}
\end{array}\right] \\
\Longrightarrow \quad H_{1} A=\left[\begin{array}{ccc}
a_{11}^{\prime} & a_{12}^{\prime} & a_{13}^{\prime} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} \\
0 & a_{32}^{\prime} & a_{33}^{\prime} \\
0 & a_{42}^{\prime} & a_{43}^{\prime}
\end{array}\right] & \Longrightarrow H_{2}=\left[\begin{array}{ll}
I_{1 \times 1} & \\
& H_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & \\
& H_{2}^{\prime}
\end{array}\right] \\
\Longrightarrow \quad H_{2} H_{1} A=\left[\begin{array}{ccc}
a_{11}^{\prime} & a_{12}^{\prime} & a_{13}^{\prime} \\
0 & a_{22}^{\prime \prime} & a_{23}^{\prime \prime} \\
0 & 0 & a_{33}^{\prime \prime} \\
0 & 0 & a_{43}^{\prime \prime}
\end{array}\right] & \Longrightarrow H_{3}=\left[\begin{array}{ll}
I_{2 \times 2} & \\
& H_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & \\
& 1
\end{array}\right. \\
\Longrightarrow H_{3} H_{2} H_{1} A=\left[\begin{array}{ccc}
a_{11}^{\prime} & a_{12}^{\prime} & a_{13}^{\prime} \\
0 & a_{22}^{\prime \prime} & a_{23}^{\prime \prime} \\
0 & 0 & a_{33}^{\prime \prime \prime} \\
0 & 0 & 0
\end{array}\right]= & R
\end{array}\right]
$$

$\Longrightarrow Q=\left(H_{3} H_{2} H_{1}\right)^{-1}=H_{1}^{-1} H_{2}^{-1} H_{3}^{-1} \stackrel{O R T H}{=} H_{1}^{T} H_{2}^{T} H_{3}^{T} \stackrel{S Y M}{=} H_{1} H_{2} H_{3}$
(a) Find the same-semiaxis Householder reflector $\hat{\mathbf{h}}_{+}$for vector \mathbf{u}.
(b) Find the same-semiaxis Householder reflector hyperplane ℓ_{+}for vector \mathbf{u}.
(c) Reflect \mathbf{u} about the same-semiaxis Householder reflector $\hat{\mathbf{h}}_{+}$to produce snapped vector \mathbf{u}_{+}.
(d) Find the same-semiaxis Householder reflector matrix H_{+}corresponding to $\hat{\mathbf{h}}_{+}$.
(a) Find the other-semiaxis Householder reflector $\hat{\mathbf{h}}_{-}$for vector \mathbf{u}.
(b) Find the other-semiaxis Householder reflector hyperplane ℓ_{-}for vector \mathbf{u}.
(c) Reflect \mathbf{u} about the other-semiaxis Householder reflector $\hat{\mathbf{h}}_{-}$to produce snapped vector \mathbf{u}_{-}.
(d) Find the other-semiaxis Householder reflector matrix H_{-}corresponding to $\hat{\mathbf{h}}_{-}$.
(a) Find the same-semiaxis Householder reflector $\hat{\mathbf{h}}_{+}$for vector \mathbf{v}.
(b) Find the same-semiaxis Householder reflector hyperplane ℓ_{+}for vector \mathbf{v}.
(c) Reflect \mathbf{v} about the same-semiaxis Householder reflector $\hat{\mathbf{h}}_{+}$to produce snapped vector \mathbf{v}_{+}.
(d) Find the same-semiaxis Householder reflector matrix H_{+}corresponding to $\hat{\mathbf{h}}_{+}$.
(a) Find the other-semiaxis Householder reflector $\hat{\mathbf{h}}_{-}$for vector \mathbf{v}.
(b) Find the other-semiaxis Householder reflector hyperplane ℓ_{-}for vector \mathbf{v}.
(c) Reflect \mathbf{v} about the other-semiaxis Householder reflector $\hat{\mathbf{h}}_{-}$to produce snapped vector \mathbf{v}_{-}.
(d) Find the other-semiaxis Householder reflector matrix H_{-}corresponding to $\hat{\mathbf{h}}_{-}$.

EX H.1.5: Given the matrix $A=\left[\begin{array}{cc}8 & -2 \\ 6 & -1\end{array}\right] \equiv\left[\begin{array}{cc}\mid & \mid \\ \mathbf{a}_{1} & \mathbf{a}_{2} \\ \mid & \mid\end{array}\right]$.
Perform the Full QR Factorization of A by constructing and applying appropriate Householder reflectors.

EX H.1.6: Given the matrix $A=\left[\begin{array}{cc}1 & -2 \\ 1 & -1 \\ 1 & 1\end{array}\right] \equiv\left[\begin{array}{cc}\mid & \mid \\ \mathbf{a}_{1} & \mathbf{a}_{2} \\ \mid & \mid\end{array}\right]$.
Perform the Full QR Factorization of A by constructing and applying appropriate Householder reflectors.

