EX S.1.1: Let matrix $A:=\left[\begin{array}{cc}2 & 1 \\ 0 & \sqrt{3}\end{array}\right]$.
(a) Perform the Full SVD on matrix A.
$1^{\text {st }}$, find the right-singular vectors $\hat{\mathbf{v}}_{k}$ of A by computing the eigenpairs of $A^{T} A$ in descending eigenvalue order.
NOTE: Since $A^{T} A$ is symmetric, its eigenvectors, denoted \mathbf{v}_{k}, will be orthogonal, but remember to normalize them to $\hat{\mathbf{v}}_{k}$.

$$
\begin{gathered}
A^{T} A=\left[\begin{array}{cc}
2 & 0 \\
1 & \sqrt{3}
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
0 & \sqrt{3}
\end{array}\right]=\left[\begin{array}{cc}
4 & 2 \\
2 & 4
\end{array}\right] \\
\Longrightarrow \text { Eigenvalues of } A^{T} A \text { are (work omitted, see EX 7.3.4): } \mu_{1}=6, \mu_{2}=2 \\
\Longrightarrow \text { Eigenvectors of } A^{T} A \text { are (work omitted): } \hat{\mathbf{v}}_{1}=\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right], \hat{\mathbf{v}}_{2}=\left[\begin{array}{r}
-1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]
\end{gathered}
$$

$2^{\text {nd }}$, find the singular values of A by taking the square root of the eigenvalues of $A^{T} A$:

$$
\sigma_{1}:=\sqrt{\mu_{1}}=\sqrt{6}, \quad \sigma_{2}:=\sqrt{\mu_{2}}=\sqrt{2}
$$

$3^{r d}$, find the left-singular vectors $\hat{\mathbf{u}}_{k}$ of A by dividing each product $A \hat{\mathbf{v}}_{k}$ by its singular value σ_{k} :

$$
\begin{aligned}
& \hat{\mathbf{u}}_{1}:=\frac{A \hat{\mathbf{v}}_{1}}{\sigma_{1}}=\frac{1}{\sqrt{6}}\left[\begin{array}{cc}
2 & 1 \\
0 & \sqrt{3}
\end{array}\right]\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]=\frac{1}{\sqrt{6}}\left[\begin{array}{r}
3 / \sqrt{2} \\
\sqrt{3} / \sqrt{2}
\end{array}\right]=\left[\begin{array}{c}
\sqrt{3} / 2 \\
1 / 2
\end{array}\right] \\
& \hat{\mathbf{u}}_{2}:=\frac{A \hat{\mathbf{v}}_{2}}{\sigma_{2}}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
2 & 1 \\
0 & \sqrt{3}
\end{array}\right]\left[\begin{array}{r}
-1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 / \sqrt{2} \\
\sqrt{3} / \sqrt{2}
\end{array}\right]=\left[\begin{array}{c}
-1 / 2 \\
\sqrt{3} / 2
\end{array}\right]
\end{aligned}
$$

$4^{\text {th }}$, form the SVD factor matrices U, Σ, V^{T} :

$$
\begin{gathered}
U=\left[\begin{array}{cc}
\mid & \mid \\
\hat{\mathbf{u}}_{1} & \hat{\mathbf{u}}_{2} \\
\mid & \mid
\end{array}\right]=\left[\begin{array}{cc}
\frac{\sqrt{3}}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right], \Sigma=\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right]=\left[\begin{array}{cc}
\sqrt{6} & 0 \\
0 & \sqrt{2}
\end{array}\right], \quad V^{T}=\left[\begin{array}{ll}
- & \hat{\mathbf{v}}_{1} \\
- & - \\
-\hat{\mathbf{v}}_{2} & -
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \\
\therefore \underbrace{\left[\begin{array}{cc}
2 & 1 \\
0 & \sqrt{3}
\end{array}\right]}_{A}=\underbrace{\left[\begin{array}{cc}
\sqrt{3} / 2 & -1 / 2 \\
1 / 2 & \sqrt{3} / 2
\end{array}\right]}_{U} \underbrace{\left[\begin{array}{cc}
\sqrt{6} & 0 \\
0 & \sqrt{2}
\end{array}\right]}_{\Sigma} \underbrace{\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]}_{V^{T}}
\end{gathered}
$$

(b) Using the Full SVD, determine the rank of A. $r \equiv \operatorname{rank}(A)=(\#$ non-zero singular values of $A)=(\#$ non-zero main-diagonal entries in $\Sigma)=2$
(c) Using the Full SVD, determine the four fundamental matrix subspaces of A.

$$
\begin{aligned}
& \operatorname{ColSp}(A)=\operatorname{Span}\left\{\hat{\mathbf{u}}_{1}, \cdots, \hat{\mathbf{u}}_{r}\right\} \quad=\operatorname{Span}\left\{\hat{\mathbf{u}}_{1}, \hat{\mathbf{u}}_{2}\right\} \quad \operatorname{ColSp}(A)=\operatorname{Span}\left\{\left[\begin{array}{c}
\sqrt{3} / 2 \\
1 / 2
\end{array}\right],\left[\begin{array}{c}
-1 / 2 \\
\sqrt{3} / 2
\end{array}\right]\right\} \\
& \operatorname{NulSp}(A)=\operatorname{Span}\left\{\hat{\mathbf{v}}_{r+1}, \cdots, \hat{\mathbf{v}}_{n}\right\} \quad=\overrightarrow{\mathbf{0}}(\mathrm{b} / \mathrm{c} r=n=2) \quad \Longrightarrow \quad \operatorname{NulSp}(A)=\operatorname{Span}\{\overrightarrow{\boldsymbol{0}}\} \quad . \\
& \left.\operatorname{ColSp}\left(A^{T}\right)=\operatorname{Span}\left\{\hat{\mathbf{v}}_{1}, \cdots, \hat{\mathbf{v}}_{r}\right\} \quad=\operatorname{Span}\left\{\hat{\mathbf{v}}_{1}, \hat{\mathbf{v}}_{2}\right\} \quad \operatorname{ColSp}\left(A^{T}\right)=\operatorname{Span}\left\{\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right],\left[\begin{array}{c}
-1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]\right\}\right) \\
& \operatorname{NulSp}\left(A^{T}\right)=\operatorname{Span}\left\{\hat{\mathbf{u}}_{r+1}, \cdots, \hat{\mathbf{u}}_{m}\right\} \quad=\overrightarrow{\mathbf{0}}(\mathrm{b} / \mathrm{c} r=m=2) \quad \Longrightarrow \quad \operatorname{NulSp}\left(A^{T}\right)=\operatorname{Span}\{\overrightarrow{\mathbf{0}}\}
\end{aligned}
$$

EX S.1.2: Let matrix $A:=\left[\begin{array}{cc}1 & \sqrt{3} \\ 1 & \sqrt{3}\end{array}\right]$.
(a) Perform the Full SVD on matrix A.
$1^{\text {st }}$, find the right-singular vectors $\hat{\mathbf{v}}_{k}$ of A by computing the eigenpairs of $A^{T} A$ in descending eigenvalue order.
NOTE: Since $A^{T} A$ is symmetric, its eigenvectors, denoted \mathbf{v}_{k}, will be orthogonal, but remember to normalize them to $\hat{\mathbf{v}}_{k}$.

$$
\begin{gathered}
A^{T} A=\left[\begin{array}{cc}
1 & 1 \\
\sqrt{3} & \sqrt{3}
\end{array}\right]\left[\begin{array}{cc}
1 & \sqrt{3} \\
1 & \sqrt{3}
\end{array}\right]=\left[\begin{array}{cc}
2 & 2 \sqrt{3} \\
2 \sqrt{3} & 6
\end{array}\right] \\
\Longrightarrow \text { Eigenvalues of } A^{T} A \text { are (work omitted, see EX 7.3.5): } \mu_{1}=8, \mu_{2}=0 \\
\Longrightarrow \text { Eigenvectors of } A^{T} A \text { are (work omitted): } \hat{\mathbf{v}}_{1}=\left[\begin{array}{r}
1 / 2 \\
\sqrt{3} / 2
\end{array}\right], \hat{\mathbf{v}}_{2}=\left[\begin{array}{r}
-\sqrt{3} / 2 \\
1 / 2
\end{array}\right]
\end{gathered}
$$

$2^{\text {nd }}$, find the singular values of A by taking the square root of the eigenvalues of $A^{T} A$:

$$
\sigma_{1}:=\sqrt{\mu_{1}}=\sqrt{8}, \quad \sigma_{2}:=\sqrt{\mu_{2}}=0
$$

$3^{r d}$, find the left-singular vectors $\hat{\mathbf{u}}_{k}$ of A by dividing each product $A \hat{\mathbf{v}}_{k}$ by its positive singular value σ_{k}.
For each zero singular value, find the corresponding left-singular vector by performing Gram-Schmidt orthonormalization.

$$
\hat{\mathbf{u}}_{1}:=\frac{A \hat{\mathbf{v}}_{1}}{\sigma_{1}}=\frac{1}{\sqrt{8}}\left[\begin{array}{cc}
1 & \sqrt{3} \\
1 & \sqrt{3}
\end{array}\right]\left[\begin{array}{r}
1 / 2 \\
\sqrt{3} / 2
\end{array}\right]=\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]
$$

Since $\sigma_{2}=0$, perform Gram-Schmidt on standard basis vector $\hat{\mathbf{e}}_{2}:=(0,1)^{T}$ with respect to $\hat{\mathbf{u}}_{1}$:
$\mathbf{u}_{2} \stackrel{G S}{=} \hat{\mathbf{e}}_{2}-\operatorname{proj}_{\hat{\mathbf{u}}_{1}} \hat{\mathbf{e}}_{2}=\hat{\mathbf{e}}_{2}-\frac{\left\langle\hat{\mathbf{e}}_{2}, \hat{\mathbf{u}}_{1}\right\rangle_{2}}{\left\langle\hat{\mathbf{u}}_{1}, \hat{\mathbf{u}}_{1}\right\rangle_{2}} \hat{\mathbf{u}}_{1}=\left[\begin{array}{l}0 \\ 1\end{array}\right]-\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]=\left[\begin{array}{r}-1 / 2 \\ 1 / 2\end{array}\right] \Longrightarrow \hat{\mathbf{u}}_{2}=\frac{\mathbf{u}_{2}}{\left\|\mathbf{u}_{2}\right\|_{2}}=\left[\begin{array}{r}-1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$
$4^{\text {th }}$, form the SVD factor matrices U, Σ, V^{T} :

$$
\begin{gathered}
U=\left[\begin{array}{cc}
\mid & \mid \\
\hat{\mathbf{u}}_{1} & \hat{\mathbf{u}}_{2} \\
\mid & \mid
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right], \quad \Sigma=\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right]=\left[\begin{array}{cc}
\sqrt{8} & 0 \\
0 & 0
\end{array}\right], \quad V^{T}=\left[\begin{array}{ll}
- & \hat{\mathbf{v}}_{1} \\
- & - \\
-\hat{\mathbf{v}}_{2} & -
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}}
\end{array}\right] \\
\therefore \underbrace{\left[\begin{array}{cc}
1 & \sqrt{3} \\
1 & \sqrt{3}
\end{array}\right]}_{A}=\underbrace{\left[\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]}_{\Sigma} \underbrace{\left[\begin{array}{cc}
\sqrt{8} & 0 \\
0 & 0
\end{array}\right]}_{\Sigma} \underbrace{\left[\begin{array}{cc}
1 / 2 & \sqrt{3} / 2 \\
-\sqrt{3} / 2 & 1 / 2
\end{array}\right]}_{V^{T}}
\end{gathered}
$$

(b) Using the Full SVD, determine the rank of A.
$r \equiv \operatorname{rank}(A)=(\#$ non-zero singular values of $A)=(\#$ non-zero main-diagonal entries in $\Sigma)=1$
(c) Using the Full SVD, determine the four fundamental matrix subspaces of A.

$$
\begin{aligned}
& \operatorname{ColSp}(A)=\operatorname{Span}\left\{\hat{\mathbf{u}}_{1}, \cdots, \hat{\mathbf{u}}_{r}\right\}=\operatorname{Span}\left\{\hat{\mathbf{u}}_{1}\right\} \Longrightarrow \operatorname{Span}\left\{\hat{\mathbf{v}}_{2}\right\} \Longrightarrow \operatorname{ColSp}(A)=\operatorname{Span}\left\{(1 / \sqrt{2}, 1 / \sqrt{2})^{T}\right\} \\
& \operatorname{NulSp}(A)=\operatorname{Span}\left\{\hat{\mathbf{v}}_{r+1}, \cdots, \hat{\mathbf{v}}_{n}\right\}=\operatorname{NulSp}(A)=\operatorname{Span}\left\{(-\sqrt{3} / 2,1 / 2)^{T}\right\} \\
& \operatorname{ColSp}\left(A^{T}\right)=\operatorname{Span}\left\{\hat{\mathbf{v}}_{1}, \cdots, \hat{\mathbf{v}}_{r}\right\}=\operatorname{Span}\left\{\hat{\mathbf{v}}_{1}\right\} \Longrightarrow \operatorname{ColSp}\left(A^{T}\right)=\operatorname{Span}\left\{(1 / 2, \sqrt{3} / 2)^{T}\right\} \\
& \operatorname{NulSp}\left(A^{T}\right)=\operatorname{Span}\left\{\hat{\mathbf{u}}_{r+1}, \cdots, \hat{\mathbf{u}}_{m}\right\}=\operatorname{Span}\left\{\hat{\mathbf{u}}_{2}\right\} \Longrightarrow \operatorname{NulSp}\left(A^{T}\right)=\operatorname{Span}\left\{(-1 / \sqrt{2}, 1 / \sqrt{2})^{T}\right\} \\
& \hline
\end{aligned}
$$

EX S.1.3: Let matrix $A:=\left[\begin{array}{ll}1 & 2 \\ 2 & 1 \\ 2 & 2\end{array}\right]$.
(a) Perform the Full SVD on matrix A.
$1^{\text {st }}$, find the right-singular vectors $\hat{\mathbf{v}}_{k}$ of A by computing the eigenpairs of $A^{T} A$ in descending eigenvalue order.
NOTE: Since $A^{T} A$ is symmetric, its eigenvectors, denoted \mathbf{v}_{k}, will be orthogonal, but remember to normalize them to $\hat{\mathbf{v}}_{k}$.

$$
\begin{gathered}
A^{T} A=\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
2 & 2
\end{array}\right]=\left[\begin{array}{ll}
9 & 8 \\
8 & 9
\end{array}\right] \\
\Longrightarrow \text { Eigenvalues of } A^{T} A \text { are (work omitted): } \mu_{1}=17, \mu_{2}=1 \\
\Longrightarrow \text { Eigenvectors of } A^{T} A \text { are (work omitted): } \hat{\mathbf{v}}_{1}=\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right], \hat{\mathbf{v}}_{2}=\left[\begin{array}{r}
-1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]
\end{gathered}
$$

$2^{\text {nd }}$, find the singular values of A by taking the square root of the eigenvalues of $A^{T} A$:

$$
\sigma_{1}:=\sqrt{\mu_{1}}=\sqrt{17}, \quad \sigma_{2}:=\sqrt{\mu_{2}}=\sqrt{1}=1
$$

$3^{r d}$, find the left-singular vectors $\hat{\mathbf{u}}_{k}$ of A by dividing each product $A \hat{\mathbf{v}}_{k}$ by its singular value σ_{k} :

$$
\begin{gathered}
\hat{\mathbf{u}}_{1}:=\frac{A \hat{\mathbf{v}}_{1}}{\sigma_{1}}=\frac{1}{\sqrt{17}}\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]=\frac{1}{\sqrt{17}}\left[\begin{array}{l}
3 / \sqrt{2} \\
3 / \sqrt{2} \\
4 / \sqrt{2}
\end{array}\right]=\left[\begin{array}{l}
3 / \sqrt{34} \\
3 / \sqrt{34} \\
4 / \sqrt{34}
\end{array}\right] \\
\hat{\mathbf{u}}_{2}:=\frac{A \hat{\mathbf{v}}_{2}}{\sigma_{2}}=\frac{1}{1}\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
2 & 2
\end{array}\right]\left[\begin{array}{c}
-1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]=\left[\begin{array}{c}
1 / \sqrt{2} \\
-1 / \sqrt{2} \\
0
\end{array}\right]
\end{gathered}
$$

There are only two singular values, so apply Gram-Schmidt to std basis vector $\hat{\mathbf{e}}_{3}:=(0,0,1)^{T}$ w.r.t $\hat{\mathbf{u}}_{1}, \hat{\mathbf{u}}_{2}$ to get $\hat{\mathbf{u}}_{3}$:
$\mathbf{u}_{3} \stackrel{G S}{=} \hat{\mathbf{e}}_{3}-\operatorname{proj}_{\hat{\mathbf{u}}_{1}} \hat{\mathbf{e}}_{3}-\operatorname{proj}_{\hat{\mathbf{u}}_{2}} \hat{\mathbf{e}}_{3}=\hat{\mathbf{e}}_{3}-\frac{\left\langle\hat{\mathbf{e}}_{3}, \hat{\mathbf{u}}_{1}\right\rangle_{2}}{\left\langle\hat{\mathbf{u}}_{1}, \hat{\mathbf{u}}_{1}\right\rangle_{2}} \hat{\mathbf{u}}_{1}-\frac{\left\langle\hat{\mathbf{e}}_{3}, \hat{\mathbf{u}}_{2}\right\rangle_{2}}{\left\langle\hat{\mathbf{u}}_{2}, \hat{\mathbf{u}}_{2}\right\rangle_{2}} \hat{\mathbf{u}}_{2}=\cdots=\left[\begin{array}{c}-12 / \sqrt{34} \\ -12 / \sqrt{34} \\ 18 / \sqrt{34}\end{array}\right] \Longrightarrow \hat{\mathbf{u}}_{3}=\left[\begin{array}{c}-2 / \sqrt{17} \\ -2 / \sqrt{17} \\ 3 / \sqrt{17}\end{array}\right]$
$4^{\text {th }}$, form the SVD factor matrices U, Σ, V^{T} and be sure to pad Σ with a third row of zeros:

$$
\begin{gathered}
U=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\hat{\mathbf{u}}_{1} & \hat{\mathbf{u}}_{2} & \hat{\mathbf{u}}_{3} \\
\mid & \mid & \mid
\end{array}\right], \Sigma=\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2} \\
0 & 0
\end{array}\right], \quad V^{T}=\left[\begin{array}{lll}
\square & \hat{\mathbf{v}}_{1} & - \\
- & \hat{\mathbf{v}}_{2} & -
\end{array}\right] \\
\therefore \\
\therefore \underbrace{\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
2 & 2
\end{array}\right]}_{A}=\underbrace{\left[\begin{array}{ccc}
3 / \sqrt{34} & 1 / \sqrt{2} & -2 / \sqrt{17} \\
3 / \sqrt{34} & -1 / \sqrt{2} & -2 / \sqrt{17} \\
4 / \sqrt{34} & 0 & 3 / \sqrt{17}
\end{array}\right]}_{U} \underbrace{\left[\begin{array}{cc}
\sqrt{17} & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]}_{\Sigma} \underbrace{\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]}_{V^{T}}]
\end{gathered}
$$

(b) Using the Full SVD, determine the column space of A and the null space of A^{T}.

$$
\begin{aligned}
& \operatorname{ColSp}(A)=\operatorname{Span}\left\{\hat{\mathbf{u}}_{1}, \cdots, \hat{\mathbf{u}}_{r}\right\}=\operatorname{Span}\left\{\hat{\mathbf{u}}_{1}, \hat{\mathbf{u}}_{2}\right\} \Longrightarrow \operatorname{ColSp}(A)=\operatorname{Span}\left\{\left[\begin{array}{l}
3 / \sqrt{34} \\
3 / \sqrt{34} \\
4 / \sqrt{34}
\end{array}\right],\left[\begin{array}{c}
1 / \sqrt{2} \\
-1 \sqrt{2} \\
0
\end{array}\right]\right\} \\
& \operatorname{NulSp}\left(A^{T}\right)=\operatorname{Span}\left\{\hat{\mathbf{u}}_{r+1}\right\} \Rightarrow \operatorname{Span}\left\{\hat{\mathbf{u}}_{3}\right\} \Longrightarrow \operatorname{NulSp}\left(A^{T}\right)=(-2 / \sqrt{17},-2 / \sqrt{17}, 3 / \sqrt{17})^{T}
\end{aligned}
$$

[^0]EX S.1.4: Let matrix $A:=\left[\begin{array}{cc}1 & \sqrt{2} \\ 1 & \sqrt{2} \\ 1 & \sqrt{2}\end{array}\right]$. Perform the Full SVD on matrix A.
$1^{\text {st }}$, find the right-singular vectors $\hat{\mathbf{v}}_{k}$ of A by computing the eigenpairs of $A^{T} A$ in descending eigenvalue order.
NOTE: Since $A^{T} A$ is symmetric, its eigenvectors, denoted \mathbf{v}_{k}, will be orthogonal, but remember to normalize them to $\hat{\mathbf{v}}_{k}$.

$$
\begin{gathered}
A^{T} A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
\sqrt{2} & \sqrt{2} & \sqrt{2}
\end{array}\right]\left[\begin{array}{cc}
1 & \sqrt{2} \\
1 & \sqrt{2} \\
1 & \sqrt{2}
\end{array}\right]=\left[\begin{array}{cc}
3 & 3 \sqrt{2} \\
3 \sqrt{2} & 6
\end{array}\right] \\
\Longrightarrow \text { Eigenvalues of } A^{T} A \text { are (work omitted): } \mu_{1}=9, \mu_{2}=0 \\
\Longrightarrow \text { Eigenvectors of } A^{T} A \text { are (work omitted): } \hat{\mathbf{v}}_{1}=\left[\begin{array}{c}
\sqrt{1 / 3} \\
\sqrt{2 / 3}
\end{array}\right], \hat{\mathbf{v}}_{2}=\left[\begin{array}{c}
-\sqrt{2 / 3} \\
\sqrt{1 / 3}
\end{array}\right]
\end{gathered}
$$

$2^{\text {nd }}$, find the singular values of A by taking the square root of the eigenvalues of $A^{T} A$:

$$
\sigma_{1}:=\sqrt{\mu_{1}}=\sqrt{9}=3, \quad \sigma_{2}:=\sqrt{\mu_{2}}=\sqrt{0}=0
$$

$3^{r d}$, find the left-singular vectors $\hat{\mathbf{u}}_{k}$ of A by dividing each product $A \hat{\mathbf{v}}_{k}$ by its singular value σ_{k} :

$$
\hat{\mathbf{u}}_{1}:=\frac{A \hat{\mathbf{v}}_{1}}{\sigma_{1}}=\frac{1}{3}\left[\begin{array}{cc}
1 & \sqrt{2} \\
1 & \sqrt{2} \\
1 & \sqrt{2}
\end{array}\right]\left[\begin{array}{c}
\sqrt{1 / 3} \\
\sqrt{2 / 3}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{c}
\sqrt{3} \\
\sqrt{3} \\
\sqrt{3}
\end{array}\right]=\left[\begin{array}{c}
1 / \sqrt{3} \\
1 / \sqrt{3} \\
1 / \sqrt{3}
\end{array}\right]
$$

Since $\sigma_{2}=0$, perform Gram-Schmidt on standard basis vector $\hat{\mathbf{e}}_{2}:=(0,1,0)^{T}$ with respect to $\hat{\mathbf{u}}_{1}$:

$$
\mathbf{u}_{2} \stackrel{G S}{=} \hat{\mathbf{e}}_{2}-\operatorname{proj}_{\hat{\mathbf{u}}_{1}} \hat{\mathbf{e}}_{2}=\hat{\mathbf{e}}_{2}-\frac{\left\langle\hat{\mathbf{e}}_{2}, \hat{\mathbf{u}}_{1}\right\rangle_{2}}{\left\langle\hat{\mathbf{u}}_{1}, \hat{\mathbf{u}}_{1}\right\rangle_{2}} \hat{\mathbf{u}}_{1}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]-\frac{1}{\sqrt{3}}\left[\begin{array}{c}
1 / \sqrt{3} \\
1 / \sqrt{3} \\
1 / \sqrt{3}
\end{array}\right]=\left[\begin{array}{r}
-1 / 3 \\
2 / 3 \\
-1 / 3
\end{array}\right] \Longrightarrow \hat{\mathbf{u}}_{2}=\frac{\mathbf{u}_{2}}{\left\|\mathbf{u}_{2}\right\|_{2}}=\left[\begin{array}{r}
-1 / \sqrt{6} \\
2 / \sqrt{6} \\
-1 / \sqrt{6}
\end{array}\right]
$$

There are only two singular values, so apply Gram-Schmidt to std basis vector $\hat{\mathbf{e}}_{3}:=(0,0,1)^{T}$ w.r.t $\hat{\mathbf{u}}_{1}, \hat{\mathbf{u}}_{2}$ to get $\hat{\mathbf{u}}_{3}$:

$$
\mathbf{u}_{3} \stackrel{G S}{=} \hat{\mathbf{e}}_{3}-\operatorname{proj}_{\hat{\mathbf{u}}_{1}} \hat{\mathbf{e}}_{3}-\operatorname{proj}_{\hat{\mathbf{u}}_{2}} \hat{\mathbf{e}}_{3}=\hat{\mathbf{e}}_{3}-\frac{\left\langle\hat{\mathbf{e}}_{3}, \hat{\mathbf{u}}_{1}\right\rangle_{2}}{\left\langle\hat{\mathbf{u}}_{1}, \hat{\mathbf{u}}_{1}\right\rangle_{2}} \hat{\mathbf{u}}_{1}-\frac{\left\langle\hat{\mathbf{e}}_{3}, \hat{\mathbf{u}}_{2}\right\rangle_{2}}{\left\langle\hat{\mathbf{u}}_{2}, \hat{\mathbf{u}}_{2}\right\rangle_{2}} \hat{\mathbf{u}}_{2}=\cdots=\left[\begin{array}{c}
-1 / 2 \\
0 \\
1 / 2
\end{array}\right] \Longrightarrow \hat{\mathbf{u}}_{3}=\left[\begin{array}{c}
-1 / \sqrt{2} \\
0 \\
1 / \sqrt{2}
\end{array}\right]
$$

$4^{t h}$, form the SVD factor matrices U, Σ, V^{T} and be sure to pad Σ with a third row of zeros:

$$
\begin{aligned}
& U=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\hat{\mathbf{u}}_{1} & \hat{\mathbf{u}}_{2} & \hat{\mathbf{u}}_{3} \\
\mid & \mid & \mid
\end{array}\right], \quad \Sigma=\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2} \\
0 & 0
\end{array}\right], \quad V^{T}=\left[\begin{array}{lll}
\square & \hat{\mathbf{v}}_{1} & - \\
- & \hat{\mathbf{v}}_{2} & -
\end{array}\right] \\
& \therefore \underbrace{\left[\begin{array}{cc}
1 & \sqrt{2} \\
1 & \sqrt{2} \\
1 & \sqrt{2}
\end{array}\right]}_{A}=\underbrace{\left[\begin{array}{ccc}
1 / \sqrt{3} & -1 / \sqrt{6} & -1 / \sqrt{2} \\
1 / \sqrt{3} & 2 / \sqrt{6} & 0 \\
1 / \sqrt{3} & -1 / \sqrt{6} & 1 / \sqrt{2}
\end{array}\right]}_{U} \underbrace{\left[\begin{array}{cc}
3 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]}_{\Sigma} \underbrace{\left[\begin{array}{cc}
\sqrt{1 / 3} & \sqrt{2 / 3} \\
-\sqrt{2 / 3} & \sqrt{1 / 3}
\end{array}\right]}_{V^{T}}
\end{aligned}
$$

[^0]: (C) 2022 Josh Engwer - Revised October 14, 2022

