Linear Systems ($\mathbf{A x}=\mathbf{b}$): Intro, Interpretation
 Linear Algebra

Josh Engwer

TTU
24 August 2015

What is Elementary Linear Algebra??

Definition

(Linear Algebra)
Elementary Linear Algebra is the study of:
Linear Systems
(Chapters 1-3)
Vector Spaces
(Chapters 4-5)
Linear Transformations (Chapters 6-7)
All these areas of Linear Algebra involve the use of:

- Scalars
- Vectors
- Matrices

Definition

(Scalar)
A scalar is a real \#: $0,1,-5,9 / 7,2.4, \sqrt[3]{7}, 6-\sqrt{2}, \log 7, \pi, e, \sin (\pi / 7), \ldots$
Complex numbers will never be considered: $3 i, 5-2 i$ where $i:=\sqrt{-1}$

Linear Systems (Definition)

Definition

(Linear System)
A $m \times n$ linear system in $x_{1}, x_{2}, \ldots, x_{n}$ has the following form:

$$
\left\{\begin{array}{cccccccc}
a_{11} x_{1} & +a_{12} x_{2} & + & \cdots & + & a_{1 n} x_{n} & = & b_{1} \\
a_{21} x_{1} & + & a_{22} x_{2} & + & \cdots & + & a_{2 n} x_{n} & = \\
b_{2} \\
\vdots & & \vdots & & \vdots & & \vdots & \\
\vdots \\
a_{m 1} x_{1} & +a_{m 2} x_{2} & + & \cdots & + & a_{m n} x_{n} & = & b_{m}
\end{array}\right.
$$

where scalars $a_{11}, \ldots, a_{1 n}, a_{21}, \ldots, a_{2 n}, \ldots, a_{m 1}, \ldots, a_{m n} \in \mathbb{R}$ and the RHS scalars $b_{1}, \ldots, b_{m} \in \mathbb{R} . \quad[R H S \equiv$ "Right-Hand Side"] The unknown variables are x_{1}, \ldots, x_{n}, and appear only to the first power. i.e., a $m \times n$ linear system has m linear equations \& n unknown variables.

Linear systems with one eqn $(m=1)$ or one unknown $(n=1)$ are too trivial.
For the purposes of this course, $1<m, n<6$.

Linear Systems (Examples)

2×2 linear system in $x, y:\left\{\begin{aligned} x-y & =5-\sqrt{2} \\ 2 x+y & =\sqrt[3]{9}\end{aligned}\right.$
2×3 linear system in $x, y, z:\left\{\begin{array}{rl}x & +z\end{array} \quad=\pi\right.$
3×2 linear system in $x_{1}, x_{2}:\left\{\begin{aligned} x_{1}+x_{2} & =1 \\ (\sqrt{3}) x_{1}-x_{2} & =\frac{3}{2} \\ x_{1} & =0\end{aligned}\right.$
3×3 linear system in $x_{1}, x_{2}, x_{3}:\left\{\begin{array}{rll}x_{1} & +x_{2}+x_{3} & =-2 \\ 2 x_{1} & -x_{2} & \\ & x_{2}-3 x_{3} & =10 \\ & & \pi \sqrt{3}\end{array}\right.$

Linear Systems (Non-Intuitive Examples)

Consider the following system: $\left\{\begin{aligned}(\cos \theta) x+(\sin \theta) y & =1 \\ (-\sin \theta) x+(\cos \theta) y & =0\end{aligned}\right.$
This is a 2×2 linear system in x, y (treating θ as constant)
Consider the following system: $\left\{\begin{array}{rlrl}k_{1} x_{1} & +k_{2} x_{2} & +x_{3} & =7 \\ k_{1} x_{1} & - & x_{2} & +k_{3} x_{3}\end{array}=-3\right.$
This is a 2×3 linear system in x_{1}, x_{2}, x_{3} (treating k_{1}, k_{2}, k_{3} as constants)

Non-Linear Systems \& Changes of Variables (CV's)

Definition

(Nonlinear Systems)
A system of equations which is not linear is called a nonlinear system.

Occasionally, it's possible to convert a nonlinear system into a linear system by an appropriate change of variables (CV):

CV: Let $u=1 / x$ and $v=\sqrt{y}$. Then:

$$
\left\{\begin{array} { r }
{ 4 / x - 3 \sqrt { y } = 1 } \\
{ - 1 / x + \pi \sqrt { y } = 0 }
\end{array} \stackrel { C v } { \Longleftrightarrow } \left\{\begin{array}{r}
4 u-3 v=1 \\
-u+\pi v=0
\end{array}\right.\right.
$$

Usually, however, it's simply not possible: $\left\{\begin{aligned} x^{2} y^{3} & = \\ e^{x} \arctan y & =\end{aligned}\right.$

Linear Systems (More Definitions)

Definition

(Underdetermined \& Overdetermined Linear Systems)
A $m \times n$ linear system is...
.. underdetermined \Longleftrightarrow there's more unknowns than equations $(m<n)$..overdetermined \Longleftrightarrow there's more equations than unknowns $(m>n)$
..square there's as many equations as unknowns ($m=n$)

Underdetermined linear system: $\left\{\begin{array}{rlll}x & & + & =\pi \\ 3 x & -y & -\frac{1}{2} z & =0\end{array}\right.$
Overdetermined linear system: $\left\{\begin{aligned} x_{1}+x_{2} & =1 \\ (\sqrt{3}) x_{1}-x_{2} & =\frac{3}{2} \\ x_{1} & =0\end{aligned}\right.$

$$
\text { Square linear system: }\left\{\begin{aligned}
x-y & =5 \\
2 x+y & =\sqrt[3]{9}
\end{aligned}\right.
$$

Possible Qualitative Solution(s) to Linear Systems

Definition

(Solution of a Linear System)
A solution of a $m \times n$ linear system satisfies all m linear eqn's simultaneously.

Theorem

(Qualitative Solution Possibilities to Linear Systems)
For a $m \times n$ linear system, exactly one of the following is true:

- The linear system has a unique solution (i.e. one and only one solution)
- The linear system has infinitely many solutions
- The linear system has no solution

Definition

(Consistent \& Inconsistent Linear Systems)
A $m \times n$ linear system is inconsistent \Longleftrightarrow it has no solution.
Otherwise, the linear system is called consistent.

Geometric Interpretation of 2×2 Linear Systems

Prototype 2×2 Linear System: $\left\{\begin{array}{lll}\ell_{1}: & a_{11} x+a_{12} y=b_{1} \\ \ell_{2}: & a_{21} x+a_{22} y=b_{2}\end{array}\right.$

Intersecting Lines
Square System
Unique Solution
Solution is a point

Parallel Lines
Square System
No Solution/Inconsistent

Coincident Lines Square System
Infinitely Many Solutions
Solutions lie on line

Geometric Interpretation of 3×2 Linear Systems

Prototype 3×2 Linear System: $\left\{\begin{array}{lll}\ell_{1}: & a_{11} x+a_{12} y=b_{1} \\ \ell_{2}: & a_{21} x+a_{22} y=b_{2} \\ \ell_{3}: & a_{31} x+a_{32} y=b_{3}\end{array}\right.$

Geometric Interpretation of 3×2 Linear Systems

Prototype 3×2 Linear System: $\begin{cases}\ell_{1}: & a_{11} x+a_{12} y=b_{1} \\ \ell_{2}: & a_{21} x+a_{22} y=b_{2} \\ \ell_{3}: & a_{31} x+a_{32} y=b_{3}\end{cases}$

Overdetermined System
Unique Solution
Solution is a point

Overdetermined System Infinitely Many Solutions Solutions lie on line

Geometric Interpretation of 3×3 Linear Systems

Prototype 3×3 Linear System: $\left\{\begin{array}{l}a_{11} x+a_{12} y+a_{13} z=b_{1} \\ a_{21} x+a_{22} y+a_{23} z=b_{2} \\ a_{31} x+a_{32} y+a_{33} z=b_{3}\end{array}\right.$

Intersecting Planes
Square System
No Solution/Inconsistent

Parallel Planes
Square System
No Solution/Inconsistent

Geometric Interpretation of 3×3 Linear Systems

Prototype 3×3 Linear System: $\left\{\begin{array}{l}a_{11} x+a_{12} y+a_{13} z=b_{1} \\ a_{21} x+a_{22} y+a_{23} z=b_{2} \\ a_{31} x+a_{32} y+a_{33} z=b_{3}\end{array}\right.$

Intersecting Planes
Square System
Unique Solution
Solution is a point

Intersecting Planes Square System
Infinitely Many Solutions
Solutions lie on line

Coincident Planes Square System
Infinitely Many Solutions
Solutions lie on plane

Geometric Interpretation of 2×3 Linear Systems

Prototype 2×3 Linear System: $\left\{\begin{array}{l}a_{11} x+a_{12} y+a_{13} z=b_{1} \\ a_{21} x+a_{22} y+a_{23} z=b_{2}\end{array}\right.$

Parallel Planes
Underdetermined System No Solution/Inconsistent

Intersecting Planes
Underdetermined System
Infinitely Many Solutions
Solutions lie on line

Coincident Planes Underdetermined System Infinitely Many Solutions Solutions lie on plane

Geometric Interpretation of 4×4 Linear Systems

$$
\begin{gathered}
\text { Prototype } 4 \times 4 \text { Linear System: } \\
\left\{\begin{array}{l}
a_{11} x+a_{12} y+a_{13} z+a_{14} w=b_{1} \\
a_{21} x+a_{22} y+a_{23} z+a_{24} w=b_{2} \\
a_{31} x+a_{32} y+a_{33} z+a_{34} w=b_{3} \\
a_{41} x+a_{42} y+a_{43}+a_{44} w=b_{4}
\end{array}\right.
\end{gathered}
$$

Hard to reliably visualize 4-dimensional hyperplanes!

Matrices, Row Vectors, Column Vectors (Definition)

Definition

(Matrix)
A $m \times n$ matrix is an array of scalars arranged in m rows \& n columns.

Definition

(Square Matrix)
A square matrix is a matrix with as many rows as columns $(m=n)$.

Definition

(Row Vector)
A n-wide row vector is a $1 \times n$ matrix (i.e. only one row)

Definition

(Column Vector)
A m-wide column vector is a $m \times 1$ matrix (i.e. only one column)

Matrices, Row Vectors, Column Vectors (Examples)

2×3 Matrix: $\left[\begin{array}{rcc}1 & 4 & 0 \\ -1 & \pi & (8-3 \sqrt{5})\end{array}\right]$
3×2 Matrix: $\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 9\end{array}\right]$
2×2 Square Matrix: $\quad\left[\begin{array}{cc}\sqrt[3]{2} & 3 / 4 \\ 1 & 0\end{array}\right]$
4-wide Row Vector: $\quad\left[\begin{array}{cccc}-3 & 7 & 0 & \sqrt{3}\end{array}\right]$
2-wide Column Vector: $\left[\begin{array}{r}1 \\ -1\end{array}\right]$
3-wide Column Vector: $\left[\begin{array}{c}7 / 5 \\ 2 \pi \\ 1\end{array}\right]$

Writing Linear Systems in Matrix-Vector Form: $\mathbf{A x}=\mathbf{b}$

Proposition

(Matrix-Vector Form of a Linear System)
A $m \times n$ linear system

$$
\left\{\begin{array}{ccccccc}
a_{11} x_{1} & +a_{12} x_{2} & + & \cdots & + & a_{1 n} x_{n} & = \\
a_{21} x_{1} & +a_{22} x_{2} & + & \cdots & + & a_{2 n} x_{n} & = \\
b_{2} \\
\vdots & & \vdots & & \vdots & & \vdots \\
& & \vdots \\
a_{m 1} x_{1} & +a_{m 2} x_{2} & + & \cdots & + & a_{m n} x_{n} & = \\
b_{m}
\end{array}\right.
$$

can be written compactly in matrix-vector form as $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

A is called the coefficient matrix (A is a $m \times n$ matrix) \mathbf{x} is called the unknown vector (\mathbf{x} is a n-wide column vector)
\mathbf{b} is called the RHS vector
(\mathbf{b} is a m-wide column vector)

Writing Linear Systems as $\mathbf{A x}=\mathbf{b}$ (Examples)

$$
\begin{aligned}
& \left\{\begin{array}{rl}
x-y=5 \\
2 x+y=\sqrt[3]{9}
\end{array} \quad A=\left[\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
5 \\
\sqrt[3]{9}
\end{array}\right]\right. \\
& \left\{\begin{array}{r}
x \\
3 x-y-\frac{1}{2} z= \\
3 x
\end{array}\right) \quad A=\left[\begin{array}{rrr}
1 & 0 & 1 \\
3 & -1 & -\frac{1}{2}
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
\pi \\
0
\end{array}\right] \\
& \left\{\begin{array}{rl}
\begin{array}{r}
x_{1}+x_{2}=
\end{array} \\
(\sqrt{3}) x_{1}-x_{2}=\frac{3}{2} \\
x_{1} & =0
\end{array} \quad A=\left[\begin{array}{rr}
1 & 1 \\
\sqrt{3} & -1 \\
1 & 0
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
1 \\
\frac{3}{2} \\
0
\end{array}\right]\right.
\end{aligned}
$$

Augmented Matrix (Definition)

Definition

(Augmented Matrix)
A $m \times n$ linear system
$\left\{\begin{array}{cccccccc}a_{11} x_{1} & + & a_{12} x_{2} & + & \cdots & + & a_{1 n} x_{n} & = \\ a_{21} x_{1} & + & a_{22} x_{2} & + & \cdots & + & a_{2 n} x_{n} & = \\ b_{2} \\ \vdots & & \vdots & & \vdots & & \vdots & \\ \vdots \\ a_{m 1} x_{1} & +a_{m 2} x_{2} & +\cdots & \cdots & a_{m n} x_{n} & = & b_{m}\end{array}\right.$
can be written compactly in matrix-vector form as $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

The system can be written more compactly as an augmented matrix: $[A \mid \mathbf{b}]$ i.e. Take coefficient matrix A, place vertical divider \& augment RHS vector \mathbf{b}.

Augmented Matrix (Examples)

LINEAR SYSTEM:

$$
\left\{\begin{aligned}
x-y & =5 \\
2 x+y & =\sqrt[3]{9}
\end{aligned}\right.
$$

$$
\left\{\begin{array}{rl}
x & +z \\
3 x-y-\frac{1}{2} z & =0
\end{array} \quad[A \mid \mathbf{b}]=\left[\begin{array}{rrr|r}
1 & 0 & 1 & \pi \\
3 & -1 & -\frac{1}{2} & 0
\end{array}\right]\right.
$$

$$
\left\{\begin{array}{rl}
x_{1}+x_{2} & =1 \\
(\sqrt{3}) x_{1}-x_{2} & =\frac{3}{2} \\
x_{1} & =0
\end{array} \quad[A \mid \mathbf{b}]=\left[\begin{array}{rr|r}
1 & 1 & 1 \\
\sqrt{3} & -1 & \frac{3}{2} \\
1 & 0 & 0
\end{array}\right]\right.
$$

A Note about Vector Notation

For this course, a variable that represents a vector is always in boldface: \mathbf{x}

But some elementary books prefer to place an arrow above the variable: $\overrightarrow{\mathbf{x}}$
and many advanced books/research papers don't distinguish vectors at all:

These slides \& outlines will often just write vectors in boldface: $\quad \mathbf{x}$

It's possible that homework/exam problems may bolden \& place an arrow: $\overrightarrow{\mathbf{x}}$

When writing by hand, optionally place an arrow (no boldface): $\quad \vec{x}$ OR x

Fin.

