Linear Systems ($A\mathbf{x} = \mathbf{b}$): Intro, Interpretation Linear Algebra

Josh Engwer

TTU

24 August 2015

What is Elementary Linear Algebra??

Definition

(Linear Algebra)

Elementary Linear Algebra is the study of:

Linear Systems(Chapters 1-3)Vector Spaces(Chapters 4-5)Linear Transformations(Chapters 6-7)

All these areas of Linear Algebra involve the use of:

- Scalars
- Vectors
- Matrices

Definition

(Scalar)

A scalar is a real #: $0, 1, -5, 9/7, 2.4, \sqrt[3]{7}, 6 - \sqrt{2}, \log 7, \pi, e, \sin(\pi/7), \dots$

Complex numbers will <u>never</u> be considered: 3i, 5 - 2i where $i := \sqrt{-1}$

Linear Systems (Definition)

Definition

(Linear System)

A $m \times n$ linear system in x_1, x_2, \ldots, x_n has the following form:

 $\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m \end{cases}$

where scalars $a_{11}, \ldots, a_{1n}, a_{21}, \ldots, a_{2n}, \ldots, a_{m1}, \ldots, a_{mn} \in \mathbb{R}$ and the RHS scalars $b_1, \ldots, b_m \in \mathbb{R}$. [RHS \equiv "Right-Hand Side"] The **unknown variables** are x_1, \ldots, x_n , and appear only to the <u>first power</u>. i.e., a $m \times n$ linear system has *m* linear equations & *n* unknown variables.

Linear systems with one eqn (m = 1) or one unknown (n = 1) are too trivial. For the purposes of this course, 1 < m, n < 6.

Linear Systems (Examples)

2×2 linear system in x, y :	$\begin{cases} x - y = 5 - \sqrt{2} \\ 2x + y = \sqrt[3]{9} \end{cases}$
2×3 linear system in x, y, z :	$\begin{cases} x + z = \pi \\ 3x - y - \frac{1}{2}z = 0 \end{cases}$
3×2 linear system in x_1, x_2 :	$\begin{cases} x_1 + x_2 = 1\\ \left(\sqrt{3}\right)x_1 - x_2 = \frac{3}{2}\\ x_1 = 0 \end{cases}$
\times 3 linear system in x_1, x_2, x_3 :	$\begin{cases} x_1 + x_2 + x_3 = -2\\ 2x_1 - x_2 &= 10\\ x_2 - 3x_3 &= \pi\sqrt{3} \end{cases}$

3

Consider the following system: $\begin{cases} (\cos \theta)x + (\sin \theta)y = 1\\ (-\sin \theta)x + (\cos \theta)y = 0 \end{cases}$

This is a 2 × 2 linear system in *x*, *y* (treating θ as **constant**)

Consider the following system:
$$\begin{cases} k_1x_1 + k_2x_2 + x_3 = 7\\ k_1x_1 - x_2 + k_3x_3 = -3 \end{cases}$$
This is a 2 × 3 linear system in x_1, x_2, x_3 (treating k_1, k_2, k_3 as **constants**)

Non-Linear Systems & Changes of Variables (CV's)

Definition

(Nonlinear Systems)

A system of equations which is not linear is called a nonlinear system.

Occasionally, it's possible to convert a nonlinear system into a linear system by an appropriate **change of variables (CV)**:

CV: Let
$$u = 1/x$$
 and $v = \sqrt{y}$. Then:

$$\begin{cases}
4/x - 3\sqrt{y} = 1 \\
-1/x + \pi\sqrt{y} = 0
\end{cases} \quad \xleftarrow{CV} \begin{cases}
4u - 3v = 1 \\
-u + \pi v = 0
\end{cases}$$

Usually, however, it's simply not possible:

$$\begin{cases} x^2 y^3 = 7\\ e^x \arctan y = -5 \end{cases}$$

Linear Systems (More Definitions)

Definition

(Underdetermined & Overdetermined Linear Systems)

A $m \times n$ linear system is...

underdetermined	\iff	there's more unknowns than equations $(m < n)$
overdetermined	\iff	there's more equations than unknowns $(m > n)$
square	\iff	there's as many equations as unknowns $(m = n)$

Underdetermined linear system:

$$\begin{cases} x + z = \pi \\ 3x - y - \frac{1}{2}z = 0 \end{cases}$$

Overdetermined linear system:

$$\begin{array}{rcrcrcrcr}
x_1 &+ & x_2 &= & 1 \\
\left(\sqrt{3}\right) x_1 &- & x_2 &= & \frac{3}{2} \\
x_1 & & & = & 0
\end{array}$$

Square linear system: $\begin{cases} x - y = 5\\ 2x + y = \sqrt[3]{9} \end{cases}$

Possible Qualitative Solution(s) to Linear Systems

Definition

(Solution of a Linear System)

A **solution** of a $m \times n$ linear system satisfies all *m* linear eqn's simultaneously.

Theorem

(Qualitative Solution Possibilities to Linear Systems)

For a $m \times n$ linear system, exactly one of the following is true:

- The linear system has a unique solution (i.e. one and only one solution)
- The linear system has infinitely many solutions
- The linear system has no solution

Definition

(Consistent & Inconsistent Linear Systems)

A $m \times n$ linear system is **inconsistent** \iff it has **no solution**.

Otherwise, the linear system is called **consistent**.

Josh Engwer (TTU)

Geometric Interpretation of 2×2 Linear Systems

Geometric Interpretation of 3×2 Linear Systems

Geometric Interpretation of 3×2 Linear Systems

Prototype 3 × 2 Linear System: $\begin{cases} \ell_1 : a_{11}x + a_{12}y = b_1 \\ \ell_2 : a_{21}x + a_{22}y = b_2 \\ \ell_3 : a_{31}x + a_{32}y = b_3 \end{cases}$

Geometric Interpretation of 3×3 Linear Systems

Prototype 3×3 Linear System:

$a_{11}x$	+	$a_{12}y$	+	$a_{13}z$	=	b_1
$a_{21}x$	+	$a_{22}y$	+	$a_{23}z$	=	b_2
$a_{31}x$	+	$a_{32}y$	+	<i>a</i> ₃₃ <i>z</i>	=	b_3

Intersecting Planes Square System No Solution/Inconsistent Parallel Planes Square System No Solution/Inconsistent

Geometric Interpretation of 3×3 Linear Systems

Prototype 3×3 Linear System:

ſ	$a_{11}x$	+	$a_{12}y$	+	$a_{13}z$	=	b_1
	$a_{21}x$	+	$a_{22}y$	+	$a_{23}z$	=	b_2
	$a_{31}x$	+	$a_{32}y$	+	$a_{33}z$	=	b_3

Intersecting Planes Square System Unique Solution Solution is a point Intersecting Planes Square System Infinitely Many Solutions Solutions lie on line Coincident Planes Square System Infinitely Many Solutions Solutions lie on plane

Geometric Interpretation of 2×3 Linear Systems

Prototype 2×3 Linear System:

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = b_1 \\ a_{21}x + a_{22}y + a_{23}z = b_2 \end{cases}$$

-

Parallel Planes Underdetermined System No Solution/Inconsistent Intersecting Planes Underdetermined System Infinitely Many Solutions Solutions lie on line Coincident Planes Underdetermined System Infinitely Many Solutions Solutions lie on plane

Geometric Interpretation of 4×4 Linear Systems

Prototype 4×4 Linear System:

ſ	$ \begin{array}{c} a_{11}x\\ a_{21}x\\ a_{31}x \end{array} $	+	$a_{12}y$	+	$a_{13}z$	+	$a_{14}w$	=	b_1
J	$a_{21}x$	+	$a_{22}y$	+	$a_{23}z$	+	$a_{24}w$	=	b_2
	$a_{31}x$	+	$a_{32}y$	+	$a_{33}z$	+	$a_{34}w$	=	b_3
l	$a_{41}x$	+	$a_{42}y$	+	$a_{43}z$	+	$a_{44}w$	=	b_4

Hard to reliably visualize 4-dimensional hyperplanes!

Josh Engwer (TTU)

Linear Systems (Ax = b): Intro, Interpretation

Matrices, Row Vectors, Column Vectors (Definition)

Definition

(Matrix)

A $m \times n$ matrix is an array of scalars arranged in *m* rows & *n* columns.

Definition

(Square Matrix) A square matrix is a matrix with as many rows as columns (m = n).

Definition

(Row Vector) A *n*-wide row vector is a $1 \times n$ matrix (i.e. only one row)

Definition

(Column Vector) A *m*-wide column vector is a $m \times 1$ matrix (i.e. only one column)

Josh Engwer (TTU)

Linear Systems (Ax = b): Intro, Interpretation

Matrices, Row Vectors, Column Vectors (Examples)

$$2 \times 3 \text{ Matrix:} \begin{bmatrix} 1 & 4 & 0 \\ -1 & \pi & (8 - 3\sqrt{5}) \end{bmatrix}$$
$$3 \times 2 \text{ Matrix:} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 9 \end{bmatrix}$$
$$2 \times 2 \text{ Square Matrix:} \begin{bmatrix} \sqrt[3]{2} & 3/4 \\ 1 & 0 \end{bmatrix}$$
$$4\text{-wide Row Vector:} \begin{bmatrix} -3 & 7 & 0 & \sqrt{3} \end{bmatrix}$$
$$2\text{-wide Column Vector:} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
$$3\text{-wide Column Vector:} \begin{bmatrix} 7/5 \\ 2\pi \\ 1 \end{bmatrix}$$

.

Writing Linear Systems in Matrix-Vector Form: $A\mathbf{x} = \mathbf{b}$

Proposition

(Matrix-Vector Form of a Linear System)

A $m \times n$ linear system

 $\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m \end{cases}$

can be written compactly in matrix-vector form as $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

A is called the **coefficient matrix x** is called the **unknown vector b** is called the **RHS vector** (A is a m × n matrix) (x is a n-wide column vector) (b is a m-wide column vector)

Writing Linear Systems as $A\mathbf{x} = \mathbf{b}$ (Examples)

$$\begin{cases} x - y = 5\\ 2x + y = \sqrt[3]{9} \end{cases} A = \begin{bmatrix} 1 & -1\\ 2 & 1 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x\\ y \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 5\\ \sqrt[3]{9} \end{bmatrix}$$
$$\begin{cases} x + z = \pi\\ 3x - y - \frac{1}{2}z = 0 \end{cases} A = \begin{bmatrix} 1 & 0 & 1\\ 3 & -1 & -\frac{1}{2} \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x\\ y\\ z \end{bmatrix}, \mathbf{b} = \begin{bmatrix} \pi\\ 0 \end{bmatrix}$$
$$\begin{cases} x_1 + x_2 = 1\\ (\sqrt{3})x_1 - x_2 = \frac{3}{2} \end{cases} A = \begin{bmatrix} 1 & 1\\ \sqrt{3} & -1 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x_1\\ x\\ x \end{bmatrix}, \mathbf{b} = \begin{bmatrix} \frac{1}{3}\\ \frac{3}{2} \end{bmatrix}$$

$$\left(\begin{array}{ccc} \left(\sqrt{5} \right) x_1 & -x_2 & = \overline{2} \\ x_1 & = 0 \end{array} \right) \xrightarrow{A} = \left[\begin{array}{ccc} \sqrt{5} & -1 \\ 1 & 0 \end{array} \right], \mathbf{x} = \left[\begin{array}{ccc} x_2 \\ x_2 \end{array} \right], \mathbf{b} = \left[\begin{array}{ccc} \overline{2} \\ 0 \\ 0 \end{array} \right]$$

Augmented Matrix (Definition)

Definition

(Augmented Matrix)

A $m \times n$ linear system

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m \end{cases}$$

can be written compactly in matrix-vector form as $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

The system can be written more compactly as an **augmented matrix**: $[A | \mathbf{b}]$ i.e. Take coefficient matrix *A*, place vertical divider & augment RHS vector **b**.

LINEAR SYSTEM: CORRESPONDING AUGMENTED MATRIX:

$$\begin{cases} x - y = 5\\ 2x + y = \sqrt[3]{9} \end{cases} \quad [A \mid \mathbf{b}] = \begin{bmatrix} 1 & -1 \mid 5\\ 2 & 1 \mid \sqrt[3]{9} \end{bmatrix}$$

$$\begin{cases} x + z = \pi \\ 3x - y - \frac{1}{2}z = 0 \end{cases} \begin{bmatrix} A \mid \mathbf{b} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \mid \pi \\ 3 & -1 & -\frac{1}{2} \mid 0 \end{bmatrix}$$

$$\begin{cases} x_1 + x_2 = 1 \\ \left(\sqrt{3}\right)x_1 - x_2 = \frac{3}{2} \\ x_1 &= 0 \end{cases} \begin{bmatrix} A \mid \mathbf{b} \end{bmatrix} = \begin{bmatrix} 1 & 1 \mid 1 \\ \sqrt{3} & -1 \mid \frac{3}{2} \\ 1 & 0 \mid 0 \end{bmatrix}$$

For this course, a variable that represents a vector is always in **boldface**: x

But some elementary books prefer to place an **arrow** above the variable: \vec{x}

and many advanced books/research papers don't distinguish vectors at all: x

These slides & outlines will often just write vectors in **boldface**: x

It's possible that homework/exam problems may bolden & place an arrow: \vec{x}

When writing **by hand**, optionally place an arrow (no boldface): \vec{x} OR x

Fin.