Solving Ax = b: Gauss-Jordan Elimination

Linear Algebra

Josh Engwer
TTU

26 August 2015

Josh Engwer (TTU) Solving Ax = b: Gauss-Jordan Elimination 26 August 2015



Equivalent Linear Systems (Definition)

Definition
(Equivalent Linear Systems)

Two m x n linear systems are equivalent <= both have same solution set.

[LS'1] { aprx + apy = bl [LS'2] { C11X + cRy = dl

anx + any = b o1x + oy = dy
Yy Y
) A ('1 {"J
(h, k)
(, 4 (h, k)
\21 >
Graph of [LS-1] Graph of [L.S-2]

Two linear systems with exact same unique solution (x,y) = (h, k)
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Equivalent Linear Systems (Definition)

Definition
(Equivalent Linear Systems)

Two m x n linear systems are equivalent <= both have same solution set.

d
dy

anx + any = b

X+ Yy

[LS-1]: {a“x + oany = b [LS-2]: {Cux + cny

Y Y
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Graph of [LS-1] Graph of [LS-2]

Two linear systems with exact same set of infinitely many solutions
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Elementary Row Operations (Motivations)

Consider the following 2 x 2 equivalent linear systems:

[Ls-1]:{;“ * g - <:>[Ab]:[1 _3_i
[Ls-z]:{_" + 3§ - ; <:>[A|b]:[ ]

Both [LS-1] & [LS-2] have the exact same unique solution: (x y) =(3,2)

However, notice that [LS-2] is simpler to work with than [LS-1] due to:
@ Linear system [LS-2] having fewer unknowns present.
@ Augmented matrix for [LS-2] having more zeros present in matrix A.
@ (visually) [LS-2] having more lines perpendicular to coordinate axes.

Y Y

3

o (3.2)

(), 4

Graph of [LS-1] Graph of [LS-2]

Josh Engwer (TTU) Solving Ax = b: Gauss-Jordan Elimination 26 August 2015 4/19



Elementary Row Operations (Definition)

When solving linear system Ax = b, one should rewrite the system into a
simpler equivalent system.

This can achieved using elementary row operations applied to the
corresponding augmented matrix [A | b ].

Definition

(Elementary Row Operations)

There are three types of elementary row operations applicable to [A | b |:
(SWAP) [Ri <> R Swap row i & row j

(SCALE) [aR; — R} Multiply row j by a non-zero scalar «
(COMBINE) [aR; + R; — R;] Add scalar multiple a of row i to row j
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Elementary Row Operations (Examples)

3 4 3 4]0
(SWAP) -1 01 Rk, 2 719
2 79 ] | -1 0]1
410 —2)(3) (=2)(4) | (=2)(0
(SCALE) 101 | 2ok ( )(_1) ( >(()) ( )(3
2 7|9 I 7 9
[ 3 4 i I 3 4 0
(COMBINE) | —1 o1 | BtR=k ~1 0 1
2 79 ] 3(3)+2 3(4)+7|3(0)+9
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Elementary Row Operations (Examples)

3 4 3 4]0
(SWAP) -1 01 Rk, 2 719
2 79 ] | -1 0]1
i 4107 [ -6 —-8|0
(SCALE) oo | PR 0
2 79| 2 79
[ 3 4 i [ 3 4]0
(COMBINE) | —1 o1 | XH&=Be 11 o)1
| 2 79 ] | 11 1919
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Reduced Row-Echelon Form (RREF) of a Matrix

Question: When is linear system Ax = b its most simplest??
Answer: When the augmented matrix [A | b ] is in RREF.

Definition
(Reduced Row-Echelon Form (RREF) of a Matrix)
An matrix is in reduced row-echelon form (RREF) if the following are all true:

@ Any rows consisting entirely of zeros occur below all non-zero rows.

@ For each non-zero row, the first (left-most) non-zero entry is 1.
(such a 1 is called a pivot or leading one)

@ For two successive non-zero rows, the pivot in the higher row is farther to
the left than the pivot in lower row.

@ Every column with a pivot has zeros above & below its pivot.

@ For linear systems, the (1, 1)-entry must be a pivot.
[NOTATION: "(i, j)-entry” means “i"* row, j* column”]

The RREF of an augmented matrix seemingly may have a “pivot” in the
last column, but it’s not really a pivot!
However, still zero out entries above & below such a "pivot” in the last column.
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RREF of an Augmented Matrix (Examples)

Examples of augmented matrices in RREF (pivots are boxed):

([ o3 [[1] =3]o] [[1] -3]4

o []js|PLo oft[Plo ofof

] ofo] T[] =3]0] [[1] —3]4

o []jo|.| 0 of1|.] 0 ofo0],

Lo 0|1 0 00 0 0/0

[[1] o o3 (1] 6 0 |0 (1] 6 20
oos,lo oo],[0001],

L0 o [1]]1 0 0 01 0 00f0

(1] o o -13 (1] 0 9 20 [[1] 0 9 2]0
o [1] o 75,[o47o],[00001]
Lo o [1] 11 0 0 0 0fl 0 00 0/0
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Gauss-Jordan Elimination (Procedure)

Question: How to rewrite augmented matrix [A | b ] into RREF??
Answer: Apply Gauss-Jordan eliminationto [A | b].

Proposition
(Gauss-Jordan Elimination)

(1) SWAP/SCALE/COMBINE to zero-out entries below pivots, left-to-right.
(2) SWAP/SCALE/COMBINE to zero-out entries above pivots, right-to-left.

WARNING: Zeroing out entries without using this particular sequence of
steps may cause earlier zeroed-out entries to become non-zero again!!
By doing this, you are doing more work than is necessary!!
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Gauss-Jordan Elim. (2 x 2 Prototype Possibitlies)

* indicates possibly non-zero entries Pivots are boxed:

*

0

ES

[A|b}{i I:]gigl 0

] - [RREF(A)‘B]

[Alb][: I}~——+G“”“"‘”d"” { 0 (’g][RREF(A)]b]
[A|b]=[ :}—M““”’”""‘" { 0 ?]:[RREF(A)]I)}
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Gauss-Jordan Elim. (3 x 2 Prototype Possibitlies)

* indicates possibly non-zero entries Pivots are boxed:
ERIEE _ 0 | * | _
[A|b]= | % = |« | Cowsdordan | = . :[RREF(A)‘b}
L J . 0 0 |0 ]
ERIEn _ 0 0] _
[Alb]=|  x|x | == | g o | = [ RREF() | b ]
L ] L 0 0 |1
_>k * >i<_ _ * *_ _
[AID] = | 5 x|« | Som=tme 00 oo | = [ RREF(A) |B |
L ] | 0 0|0 ]
_* * *_ _ * T _
[AID] = | 5 x|« | o=t 50 o |1 | = [ RREF(A) | B |
L *_ L 0 O -
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Protip: Delay the Onslaught of Fractions (Part 1)

Sometimes an augmented matrix may have fractions in some entries:

[ 3 1/2]1/5 } (§)ri—r [ 1/6 | 1115 }

13 2 4 13 2 4

This will cause Gauss-Jordan to involve tedious fraction arithmetic!

To avoid dealing with fractions (at least for a few steps),
SCALE each row with fractions by its common denominator:

3 12157 wr—r [ 30 5 wor, [[1] 612
13 2 4 3Ry—R, 1 6 12 30 5| 2
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Protip: Delay the Onslaught of Fractions (Part 2)

Sometimes a SCALE to create a pivot may cause fractions in other entries:

34187 (1yron 4/3 | 8/3
2 3|0 —— |2 3]0
5 6|3 5 6 3

This will cause later Gauss-Jordan steps to involve tedious fraction arithmetic!

To avoid dealing with fractions (at least for a few steps),

Zero-out each entry below a would-be pivot by SCALE-ing each pair of rows
such that the two entries are identical:

3 4|8

2 3 O 2R1—>R1

5 6 3 3Rz*>R2
[3 4| 8

0 1 —16 S5Ri—R;

5 6 3 3R3—R3
(%)RlﬁRl 4/3

- 0 1

0o -2
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NOTE: entries may become quite large!

(=DRi+R,—R, 6 8] 16 (3)R1—Ry
- 510 1|-16 | —VY—
5 6 3
40 (DR Ry Ry 15 20 | 40
-16 | ——= 0 1 | —16
9 0 2| -31

Again, fractions may be inevitable,
but at least they can be delayed.
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Solving Ax = b using Gauss-Jordan Elimination

Definition

A mathematical statement is a tautology < itis always true.
A mathematical statement is a contradiction < it is always false.

TAUTOLOGY: | CONTRADICTION:
3=3 0=1
7 is a prime number 6 is a prime number
If £(x) = x2, then f'(x) = 2x | If f(x) = logx, then f'(x) = 0

If a row of [ RREF(A) | b ] translates to a TAUTOLOGY (0 = 0), then proceed
as usual. (Unique soln, no soln, or infinitely many soln’s can occur)

If a row of [ RREF(A) | b] translates to a CONTRADICTION,
then linear system Ax = b has no solution:

3]0 x4+ 3w =0 ,
5ol = 5 = V' contadictont [NoSon]
300 X+ 3np =0
0 O0f1 — 0 1 + Contradiction!
0 00 0 = 0+« Tautology
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Solving Ax = b using Gauss-Jordan Elimination

Each column of RREF(A) that contains a pivot means corresponding
unknown variable is a fixed variable.

Each column of RREF(A) that contains no pivot means corresponding
unknown variable is a free variable.

Each free variable can be any scalar, so assign each one a parameter.
Each fixed variable must be expressed in terms of the parameters.

- 0|3 . are fixed variables ] x| |3
0 5 There are no free variables x|

- x1 is a fixed variable
6 2|3 .
x», x3 are free variables
0 0 0/0| = B <
o o olo Let x, = s and x3 = ¢, where parameters s,t € R
L Thenx; +6x, +2x3 =3 = x; =3 —65—2¢
Column X1 3 —6s5s—2t 3 —6 -2
Vector Xy | = s =10 | +s 1 |+t 0
Form: X3 t 0 0 1

Tuple Form: ‘ (x1,%2,x3) = (3 — 65 — 21, 5,1)
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Solving Ax = b via Gauss-Jordan Elim. (Procedure)

Proposition
(Solving m x n Linear System Ax = b using Gauss-Jordan Elimination)
(1) Form augmented matrix [A | b ]

(2) SWAP/SCALE/COMBINE to zero-out entries below pivots, left-to-right
(8) SWAP/SCALE/COMBINE to zero-out entries above pivots, right-to-left
At this point, Gauss-Jordan is done: [A | b | S&s=loden, 1 RREF(A) | b ]
(4) Translate augmented matrix | RREF(A) | b | into equivalent linear system:

If any equations are a CONTRADICTION, then system has no solution
If any equations are a TAUTOLOGY, then proceed as usual to STEP (5)

(5) Identify all fixed variables & free variables using RREF(A):

Each column that contains a pivot corresponds to a fixed variable
Each column that contains no pivot corresponds to a free variable

(6) Assign each free variable a unique parameter
(7) Express each fixed variable in terms of the parameters
(8) Write out solution in either tuple form or column vector form
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Why no mention of Gaussian Elimination??

You may have learned Gaussian Elimination from a previous course.
For most of this course, Gauss-Jordan Elimination is absolutely essential.

Gaussian Elimination is only used in this course for:

LU-Factorization of a Square Matrix (Larson 2.4)
Determinant of a large dense Square Matrix (Larson 3.2)

So, we'll encounter it at these sections of the textbook, but I'll describe the
procedure more as "Elementary Row Operations to achieve a certain
structure in the matrix” rather than "Gaussian Elimination.”

Gaussian Elim. has a central role in Numerical Linear Algebra. (MATH 4312)
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