Constructing $A \mathbf{x}=\mathbf{b}$: Curve Interpolation

Linear Algebra

Josh Engwer

TTU
31 August 2015

Curve Interpolation (Definition)

A useful procedure in many applications is curve interpolation:

Definition

(Curve Interpolation)
Let function $f(x)$ be continuous. Then:
The curve $y=f(x)$ interpolates a set of n points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ if:

$$
\begin{array}{ccc}
f\left(x_{1}\right) & =y_{1} \\
f\left(x_{2}\right) & = & y_{2} \\
\vdots & & \vdots \\
f\left(x_{n}\right) & = & y_{n}
\end{array}
$$

i.e. A curve interpolates a set of points if the curve contains all the points.

Curve Interpolation (Visual Example)

This is Curve Interpolation
since curve $y=f(x)$ contains points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{5}, y_{5}\right)$
i.e. $f\left(x_{1}\right)=y_{1}, f\left(x_{2}\right)=y_{2}, f\left(x_{3}\right)=y_{3}, f\left(x_{4}\right)=y_{4}, f\left(x_{5}\right)=y_{5}$

Curve Interpolation (Visual Non-Example)

This is NOT Curve Interpolation
since curve $y=f(x)$ does not contain points $\left(x_{1}, y_{1}\right),\left(x_{3}, y_{3}\right),\left(x_{5}, y_{5}\right)$

$$
\text { i.e. } f\left(x_{1}\right) \neq y_{1}, \quad f\left(x_{3}\right) \neq y_{3}, f\left(x_{5}\right) \neq y_{5}
$$

Polynomial Interpolation

To simplify matters, curve interpolation will always involve polynomials:

Proposition

(Polynomial Interpolation)
Given n points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ s.t. all x-coordinates are distinct. Then, there exists a unique ($n-1$)-degree interpolating polynomial

$$
p(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots+c_{n-1} x^{n-1}
$$

where scalars $c_{0}, c_{1}, c_{2}, \ldots, c_{n-1} \in \mathbb{R}$ are to be determined such that

$$
p\left(x_{1}\right)=y_{1}, p\left(x_{2}\right)=y_{2}, \ldots, p\left(x_{n}\right)=y_{n}
$$

For instance, there's a unique quadratic $p(x)=c_{0}+c_{1} x+c_{2} x^{2}$ that contains the three points $(-1,4),(0,-2),(3,5)$.
There's a unique cubic $p(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}$ that contains four points, etc...

Polynomial Interpolation (Procedure)

So how to find the unknown coefficients $c_{0}, c_{1}, c_{2}, \ldots, c_{n-1}$ of an interpolating polynomial $p(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n-1} x^{n-1}$?

Proposition

(Polynomial Interpolation Procedure)
GIVEN: Points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ s.t. all x-coordinates are distinct.
TASK: Find unique interpolating polynomial

$$
p(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots+c_{n-1} x^{n-1}
$$

(1) Setup linear system $A \mathbf{x}=\mathbf{b}$ using $p\left(x_{1}\right)=y_{1}, p\left(x_{2}\right)=y_{2}, \ldots, p\left(x_{n}\right)=y_{n}$:

$$
\begin{array}{rllllllllll}
c_{0}+ & c_{1} x_{1} & + & c_{2} x_{1}^{2} & +c_{3} x_{1}^{3} & + & \cdots & +c_{n-1} x_{1}^{n-1} & = & y_{1} \\
c_{0} & + & c_{1} x_{2} & + & c_{2} x_{2}^{2} & +c_{3} x_{2}^{3} & + & \cdots & +c_{n-1} x_{2}^{n-1} & = & y_{2} \\
\vdots & & \vdots & & \vdots & & \vdots & \ddots & & & \vdots \\
& \vdots & c_{0} x_{n} & +c_{2} x_{n}^{2}+c_{3} x_{n}^{3}+ & +\cdots & +c_{n-1} x_{n}^{n-1} & =y_{n}
\end{array}
$$

This is a $n \times n$ square linear system with unknowns $c_{0}, c_{1}, c_{2}, \ldots, c_{n-1}$.
(2) Solve linear system using Gauss-Jordan Elimination as usual.

Differential Curve Interpolation (Definition)

Sometimes, besides a curve having to contain certain points, its derivatives (such as slope \& concavity) at some points must be particular values:

Definition

(Differential Curve Interpolation)
Let function $f \in C^{n-1}$. Then:
The curve $y=f(x)$ interpolates a point $\left(x_{0}, y_{0}\right)$ in the differential sense if:

$$
\begin{array}{ccc}
f\left(x_{0}\right) & = & y_{0} \\
f^{\prime}\left(x_{0}\right) & = & \alpha_{1} \\
f^{\prime \prime}\left(x_{0}\right) & = & \alpha_{2} \\
\vdots & & \vdots \\
f^{(n-1)}\left(x_{0}\right) & = & \alpha_{n-1}
\end{array}
$$

where scalars $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1} \in \mathbb{R}$.
i.e. The curve contains a single point but also must satisfy prescribed derivative values at that point.

NOTATION: $f \in C^{n}$ means function f is n-times continuously differentiable.

Differential Curve Interpolation (Procedure)

Proposition

(Differential Curve Interpolation Procedure)
GIVEN: Point $\left(x_{0}, y_{0}\right) \&$ function $f \in C^{n-1}$ s.t. $f(x)=c_{1} f_{1}(x)+\cdots+c_{n} f_{n}(x)$ TASK: Find coefficients c_{1}, \ldots, c_{n} s.t. f satisfies the following conditions:

$$
f\left(x_{0}\right)=y_{0}, f^{\prime}\left(x_{0}\right)=\alpha_{1}, f^{\prime \prime}\left(x_{0}\right)=\alpha_{2}, f^{\prime \prime \prime}\left(x_{0}\right)=\alpha_{3}, \ldots, f^{(n-1)}\left(x_{0}\right)=\alpha_{n-1}
$$

(1) Setup $n \times n$ linear system where each equation satisfies a condition.
(2) Solve linear system using Gauss-Jordan Elimination as usual.
(\star) For simplicity, functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ can only be:

- Polynomials: $1, x, x^{2}, x^{3}, \ldots$
- Exponentials: $e^{x}, e^{-x}, e^{2 x}, e^{-2 x}, \ldots$
- Sines/Cosines: $\sin x, \cos x, \sin 2 x, \cos 2 x, \ldots$
- Products of these: $x e^{x}, x \sin 2 x, x^{3} \cos x, e^{2 x} \sin 3 x, \ldots$

NOTATION: $f \in C^{n}$ means function f is n-times continuously differentiable.

Advanced Interpolation

The interpolation methods discussed so far are the most elementary methods. However, there are more advanced (robust) methods that won't be considered in this course:

- Lagrange Interpolation
- Hermite Interpolation
- Spline Interpolation
- Interpolation using barycentric coordinates
- Interpolation using surfaces (instead of curves)

Many of these more advanced interpolation methods are encountered in Numerical Analysis. (MATH 4310)

Fin.

