Constructing $A\mathbf{x} = \mathbf{b}$: Curve Interpolation

Linear Algebra

Josh Engwer

TTU

31 August 2015

A useful procedure in many applications is curve interpolation:

Definition (Curve Interpolation) Let function f(x) be **continuous**. Then: The curve y = f(x) interpolates a set of *n* points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ if: $\begin{array}{rcl} f(x_1) &=& y_1 \\ f(x_2) &=& y_2 \end{array}$: : $f(x_n) = y_n$ i.e. A curve **interpolates** a set of points if the curve **contains** all the points.

Curve Interpolation (Visual Example)

Curve Interpolation (Visual Non-Example)

This is **NOT** Curve Interpolation since curve y = f(x) does **not** contain points $(x_1, y_1), (x_3, y_3), (x_5, y_5)$ i.e. $f(x_1) \neq y_1, f(x_3) \neq y_3, f(x_5) \neq y_5$ To simplify matters, curve interpolation will always involve polynomials:

Proposition

(Polynomial Interpolation)

Given *n* points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ s.t. all *x*-coordinates are **distinct**. Then, there exists a **unique** (n - 1)-degree interpolating polynomial

$$p(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots + c_{n-1} x^{n-1}$$

where scalars $c_0, c_1, c_2, \ldots, c_{n-1} \in \mathbb{R}$ are to be determined such that

$$p(x_1) = y_1, \ p(x_2) = y_2, \ \dots, \ p(x_n) = y_n$$

For instance, there's a unique quadratic $p(x) = c_0 + c_1 x + c_2 x^2$ that contains the **three** points (-1, 4), (0, -2), (3, 5).

There's a unique cubic $p(x) = c_0 + c_1x + c_2x^2 + c_3x^3$ that contains **four** points, etc...

Polynomial Interpolation (Procedure)

So how to find the unknown coefficients $c_0, c_1, c_2, \dots, c_{n-1}$ of an interpolating polynomial $p(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{n-1} x^{n-1}$?

Proposition

(Polynomial Interpolation Procedure)

<u>*GIVEN:*</u> Points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ s.t. all *x*-coordinates are **distinct**. <u>*TASK:*</u> Find unique interpolating polynomial

$$p(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots + c_{n-1} x^{n-1}$$

(1) Setup linear system $A\mathbf{x} = \mathbf{b}$ using $p(x_1) = y_1, \ p(x_2) = y_2, \ \dots, \ p(x_n) = y_n$:

(2) Solve linear system using Gauss-Jordan Elimination as usual.

Differential Curve Interpolation (Definition)

Sometimes, besides a curve having to contain certain points, its **derivatives** (such as **slope** & **concavity**) at some points must be particular values:

Definition

(Differential Curve Interpolation)

Let function $f \in C^{n-1}$. Then:

The curve y = f(x) interpolates a point (x_0, y_0) in the differential sense if:

$$\begin{array}{rcl}
f(x_0) &=& y_0 \\
f'(x_0) &=& \alpha_1 \\
f''(x_0) &=& \alpha_2 \\
\vdots & & \vdots \\
^{(n-1)}(x_0) &=& \alpha_{n-1}
\end{array}$$

where scalars $\alpha_1, \alpha_2, \ldots, \alpha_{n-1} \in \mathbb{R}$.

i.e. The curve contains a single point but also must satisfy prescribed derivative values at that point.

<u>NOTATION:</u> $f \in C^n$ means function f is *n*-times continuously differentiable.

Proposition

(Differential Curve Interpolation Procedure)

<u>GIVEN</u>: Point (x_0, y_0) & function $f \in C^{n-1}$ s.t. $f(x) = c_1 f_1(x) + \dots + c_n f_n(x)$ <u>TASK</u>: Find coefficients c_1, \dots, c_n s.t. f satisfies the following conditions:

 $f(x_0) = y_0, f'(x_0) = \alpha_1, f''(x_0) = \alpha_2, f'''(x_0) = \alpha_3, \dots, f^{(n-1)}(x_0) = \alpha_{n-1}$

- (1) Setup $n \times n$ linear system where each equation satisfies a condition.
- (2) Solve linear system using Gauss-Jordan Elimination as usual.
- (*) For simplicity, functions $f_1(x), f_2(x), \ldots, f_n(x)$ can only be:
 - *Polynomials:* 1, *x*, *x*², *x*³, ...
 - Exponentials: $e^{x}, e^{-x}, e^{2x}, e^{-2x}, ...$
 - Sines/Cosines: $\sin x$, $\cos x$, $\sin 2x$, $\cos 2x$, ...
 - Products of these: xe^x , $x \sin 2x$, $x^3 \cos x$, $e^{2x} \sin 3x$, ...

<u>NOTATION:</u> $f \in C^n$ means function f is *n*-times continuously differentiable.

The interpolation methods discussed so far are the most elementary methods. However, there are more advanced (robust) methods that won't be considered in this course:

- Lagrange Interpolation
- Hermite Interpolation
- Spline Interpolation
- Interpolation using barycentric coordinates
- Interpolation using surfaces (instead of curves)

Many of these more advanced interpolation methods are encountered in **Numerical Analysis**. (MATH 4310)

Fin.