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Curve Interpolation (Definition)

A useful procedure in many applications is curve interpolation:

Definition
(Curve Interpolation)

Let function f (x) be continuous. Then:
The curve y = f (x) interpolates a set of n points (x1, y1), (x2, y2), . . . , (xn, yn) if:

f (x1) = y1
f (x2) = y2

...
...

f (xn) = yn

i.e. A curve interpolates a set of points if the curve contains all the points.
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Curve Interpolation (Visual Example)

This is Curve Interpolation
since curve y = f (x) contains points (x1, y1), . . . , (x5, y5)

i.e. f (x1) = y1, f (x2) = y2, f (x3) = y3, f (x4) = y4, f (x5) = y5
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Curve Interpolation (Visual Non-Example)

This is NOT Curve Interpolation
since curve y = f (x) does not contain points (x1, y1), (x3, y3), (x5, y5)

i.e. f (x1) 6= y1, f (x3) 6= y3, f (x5) 6= y5
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Polynomial Interpolation

To simplify matters, curve interpolation will always involve polynomials:

Proposition
(Polynomial Interpolation)

Given n points (x1, y1), (x2, y2), . . . , (xn, yn) s.t. all x-coordinates are distinct.
Then, there exists a unique (n− 1)-degree interpolating polynomial

p(x) = c0 + c1x + c2x2 + c3x3 + · · ·+ cn−1xn−1

where scalars c0, c1, c2, . . . , cn−1 ∈ R are to be determined such that

p(x1) = y1, p(x2) = y2, . . . , p(xn) = yn

For instance, there’s a unique quadratic p(x) = c0 + c1x + c2x2

that contains the three points (−1, 4), (0,−2), (3, 5).

There’s a unique cubic p(x) = c0 + c1x + c2x2 + c3x3 that contains four points,
etc...
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Polynomial Interpolation (Procedure)
So how to find the unknown coefficients c0, c1, c2, . . . , cn−1
of an interpolating polynomial p(x) = c0 + c1x + c2x2 + · · ·+ cn−1xn−1?

Proposition
(Polynomial Interpolation Procedure)

GIVEN: Points (x1, y1), (x2, y2), . . . , (xn, yn) s.t. all x-coordinates are distinct.
TASK: Find unique interpolating polynomial

p(x) = c0 + c1x + c2x2 + c3x3 + · · ·+ cn−1xn−1

(1) Setup linear system Ax = b using p(x1) = y1, p(x2) = y2, . . . , p(xn) = yn:

c0 + c1x1 + c2x2
1 + c3x3

1 + · · · + cn−1xn−1
1 = y1

c0 + c1x2 + c2x2
2 + c3x3

2 + · · · + cn−1xn−1
2 = y2

...
...

...
...

. . .
...

c0 + c1xn + c2x2
n + c3x3

n + · · · + cn−1xn−1
n = yn

This is a n× n square linear system with unknowns c0, c1, c2, . . . , cn−1.

(2) Solve linear system using Gauss-Jordan Elimination as usual.
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Differential Curve Interpolation (Definition)
Sometimes, besides a curve having to contain certain points, its derivatives
(such as slope & concavity) at some points must be particular values:

Definition
(Differential Curve Interpolation)

Let function f ∈ Cn−1. Then:
The curve y = f (x) interpolates a point (x0, y0) in the differential sense if:

f (x0) = y0
f ′(x0) = α1
f ′′(x0) = α2

...
...

f (n−1)(x0) = αn−1

where scalars α1, α2, . . . , αn−1 ∈ R.

i.e. The curve contains a single point but also must satisfy prescribed
derivative values at that point.

NOTATION: f ∈ Cn means function f is n-times continuously differentiable.
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Differential Curve Interpolation (Procedure)

Proposition
(Differential Curve Interpolation Procedure)

GIVEN: Point (x0, y0) & function f ∈ Cn−1 s.t. f (x) = c1f1(x) + · · ·+ cnfn(x)
TASK: Find coefficients c1, . . . , cn s.t. f satisfies the following conditions:

f (x0) = y0, f ′(x0) = α1, f ′′(x0) = α2, f ′′′(x0) = α3, . . . , f (n−1)(x0) = αn−1

(1) Setup n× n linear system where each equation satisfies a condition.
(2) Solve linear system using Gauss-Jordan Elimination as usual.

(?) For simplicity, functions f1(x), f2(x), . . . , fn(x) can only be:

Polynomials: 1, x, x2, x3, . . .

Exponentials: ex, e−x, e2x, e−2x, . . .

Sines/Cosines: sin x, cos x, sin 2x, cos 2x, . . .

Products of these: xex, x sin 2x, x3 cos x, e2x sin 3x, . . .

NOTATION: f ∈ Cn means function f is n-times continuously differentiable.
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Advanced Interpolation

The interpolation methods discussed so far are the most elementary methods.
However, there are more advanced (robust) methods that won’t be considered
in this course:

Lagrange Interpolation
Hermite Interpolation
Spline Interpolation
Interpolation using barycentric coordinates
Interpolation using surfaces (instead of curves)

Many of these more advanced interpolation methods are encountered in
Numerical Analysis. (MATH 4310)
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Fin

Fin.
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