Matrix Algebra: Add, Transpose, Multiply

Linear Algebra

Josh Engwer

TTU

02 September 2015

PART I:

MATRIX ADDITION, MATRIX SUBTRACTION, SCALAR MULTIPLICATION, TRANSPOSES

Compact Notation for Arbitrary Matrix Entries

It's too tedious to represent the entries of an arbitrary matrix as shown before. Fortunately, there's a far simpler conventional notation:

Proposition

(Compact Notation for Arbitrary Matrix Entries)
An arbitrary $m \times n$ matrix

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

can be represented compactly as

$$
A=\left[a_{i j}\right]_{m \times n} \quad(\text { where } 1 \leq i \leq m \text { and } 1 \leq j \leq n)
$$

If the shape of A is not known a priori, then simply write: $A=\left[a_{i j}\right]$

Equality of Matrices (Definition)

Question: When are two matrices equal??

Definition

(Equal Matrices)
Let $A=\left[a_{i j}\right], B=\left[b_{i j}\right]$ be matrices of arbitrary shapes.
Then matrices A and B are equal \Longleftrightarrow the following are all true:
(i) Matrices A and B have the same shape: A and B are both $m \times n$
(ii) Their corresponding entries are equal: $a_{i j}=b_{i j} \forall i, j$

LOGIC NOTATION: The symbol \forall means "for all", "for every"

Equality of Matrices (Examples)

$$
\left[\begin{array}{ccc}
1 & 3 & \pi \\
\sqrt{2} & -1 & 7 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 3 & x \\
\sqrt{2} & y & 7 \\
z & 0 & 1
\end{array}\right] \Longleftrightarrow\left\{\begin{array}{lll}
x & =\pi \\
y & =-1 \\
z= & 0
\end{array}\right.
$$

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \neq\left[\begin{array}{lll}
1 & 2 & 0 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \text { since the }(1,3) \text {-entries are unequal: } 3 \neq 0
$$

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right] \neq\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \text { since } \begin{aligned}
& \text { LHS is a } 3 \times 2 \text { matrix } \\
& \text { RHS is a } 2 \times 3 \text { matrix }
\end{aligned}
$$

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right] \neq\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] \text { since } \begin{aligned}
& \text { LHS is a 4-wide row vector } \\
& \text { RHS is a 4-wide column vector }
\end{aligned}
$$

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8
\end{array}\right] \neq 5 \text { since }
$$

LHS is a 2×4 matrix RHS is a scalar

Matrix Addition (Definition)

Adding a matrix to another matrix is defined as expected:

Definition

(Matrix Addition)
Let matrices $A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[b_{i j}\right]_{m \times n}$. Then:

$$
A+B:=\left[a_{i j}+b_{i j}\right]_{m \times n}
$$

i.e. The (i, j)-entry of $A+B$ is the sum of the (i, j)-entries of A and B.

NOTE: $A+B$ is undefined if matrices A and B have different shapes.

Matrix Addition (Examples)

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]+\left[\begin{array}{ccc}
1 & 3 & \pi \\
7 & -1 & \sqrt{3} \\
4 & 5 & 1
\end{array}\right]=\left[\begin{array}{ccc}
2 & 5 & (3+\pi) \\
11 & 4 & (6+\sqrt{3}) \\
11 & 13 & 10
\end{array}\right]} \\
& {\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]+\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \text { is undefined. }} \\
& {\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]+\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \text { is undefined. }} \\
& {\left[\begin{array}{c}
4 \\
-3
\end{array}\right]+\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8
\end{array}\right] \text { is undefined. }} \\
& {\left[\begin{array}{ll}
4 & -3
\end{array}\right]+\left[\begin{array}{llll}
1 & 2 & 3 \\
5 & 6 & 7 & 8
\end{array}\right] \text { is undefined. }} \\
& 5+\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8
\end{array}\right] \text { is undefined. }
\end{aligned}
$$

Scalar Multiplication of a Matrix (Definition)

Multiplying a matrix by a scalar is defined as expected:

Definition

(Scalar Multiplication of a Matrix)
Let matrix $A=\left[a_{i j}\right]_{m \times n}$ and scalar $\alpha \in \mathbb{R}$. Then:

$$
\alpha A:=\left[\alpha a_{i j}\right]_{m \times n}
$$

i.e. The (i, j)-entry of αA is the product of α and the (i, j)-entry of A.

NOTE: αA is never undefined.

Scalar Multiplication of a Matrix (Examples)

(2) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]=\left[\begin{array}{ll}(2)(1) & (2)(2) \\ (2)(3) & (2)(4) \\ (2)(5) & (2)(6)\end{array}\right]=\left[\begin{array}{cc}2 & 4 \\ 6 & 8 \\ 10 & 12\end{array}\right]$
$(-1)\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]=\left[\begin{array}{lll}(-1)(1) & (-1)(2) & (-1)(3) \\ (-1)(4) & (-1)(5) & (-1)(6)\end{array}\right]=\left[\begin{array}{lll}-1 & -2 & -3 \\ -4 & -5 & -6\end{array}\right]$
(4) $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]=\left[\begin{array}{lll}(4)(1) & (4)(2) & (4)(3)\end{array}\right]=\left[\begin{array}{lll}4 & 8 & 12\end{array}\right]$
$\left(\frac{1}{2}\right)\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=\left[\begin{array}{ll}\left(\frac{1}{2}\right) & (1) \\ \left(\frac{1}{2}\right. & (2) \\ \left(\frac{1}{2}\right) & (3)\end{array}\right]=\left[\begin{array}{c}1 / 2 \\ 1 \\ 3 / 2\end{array}\right]$

Matrix Subtraction (Definition)

Matrix subtraction is formally defined in terms of matrix addition \& scalar mult.:

Definition

(Matrix Subtraction)
Let matrices $A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[b_{i j}\right]_{m \times n}$. Then:

$$
A-B:=A+(-1) B
$$

Of course in practice, matrix subtraction is performed as expected:

Corollary

(Matrix Subtraction)
Let matrices $A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[b_{i j}\right]_{m \times n}$. Then:

$$
A-B:=\left[a_{i j}-b_{i j}\right]_{m \times n}
$$

i.e. The (i, j)-entry of $A-B$ is the difference of the (i, j)-entry of A by that of B.

NOTE: $A-B$ is undefined if matrices A and B have different shapes.

Matrix Subtraction (Examples)

$\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]-\left[\begin{array}{ccc}1 & 3 & -\pi \\ 7 & -1 & \sqrt{3} \\ 4 & 5 & 1\end{array}\right]=\left[\begin{array}{ccc}0 & -1 & (3+\pi) \\ -3 & 6 & (6-\sqrt{3}) \\ 3 & 3 & 8\end{array}\right]$
$\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]-\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$ is undefined.
$\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]-\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ is undefined.
$\left[\begin{array}{c}4 \\ -3\end{array}\right]-\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8\end{array}\right]$ is undefined.
$\left[\begin{array}{ll}4 & -3\end{array}\right]-\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8\end{array}\right]$ is undefined.
$5-\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8\end{array}\right]$ is undefined.

Partitioning a Matrix into Row/Column Vectors

Sometimes it's useful to partition a matrix in terms of:
Column Vectors: $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 0 & 1 & 2\end{array}\right]=\left[\begin{array}{cccc}\mid & \mid & \mid & \mid \\ \mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} & \mathbf{v}_{4} \\ \mid & \mid & \mid & \mid\end{array}\right]$
Row Vectors: $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 0 & 1 & 2\end{array}\right]=\left[\begin{array}{lll}\square & \mathbf{u}_{1} & - \\ \square & \mathbf{u}_{2} & - \\ - & \mathbf{u}_{3} & -\end{array}\right]$
where $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 5 \\ 9\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 6 \\ 0\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}3 \\ 7 \\ 1\end{array}\right], \mathbf{v}_{4}=\left[\begin{array}{l}4 \\ 8 \\ 2\end{array}\right]$
and $\mathbf{u}_{1}=\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{llll}5 & 6 & 7 & 8\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{llll}9 & 0 & 1 & 2\end{array}\right]$
Such partitioning will be occasionally used later in the course.
Partitioning into column vectors will usually be preferred over row vectors.

Partitioning a Matrix into Blocks

Sometimes it's useful to partition a matrix in terms of blocks:
$A=\left[\begin{array}{ll|ll}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ \hline 9 & 0 & 1 & 2\end{array}\right]=\left[\begin{array}{l|l}A_{11} & A_{12} \\ \hline A_{21} & A_{22}\end{array}\right]$
where blocks
$A_{11}=\left[\begin{array}{ll}1 & 2 \\ 5 & 6\end{array}\right], A_{12}=\left[\begin{array}{ll}3 & 4 \\ 7 & 8\end{array}\right], A_{21}=\left[\begin{array}{ll}9 & 0\end{array}\right], A_{22}=\left[\begin{array}{ll}1 & 2\end{array}\right]$

Such partitioning will never be used in this course.
However, it is seen in Numerical Analysis as it's critical in designing \& analyzing numerical algorithms.

Transpose of a Matrix (Definition)

Definition

(Transpose of a Matrix)
Let matrix $A=\left[a_{i j}\right]_{m \times n}$. Then $A^{T}:=\left[a_{j i}\right]_{n \times m}$
Notice that the transpose of a $m \times n$ matrix is a $n \times m$ matrix.
i.e. The $k^{\text {th }}$ row of A becomes the $k^{\text {th }}$ column of A^{T}.
i.e. The $k^{\text {th }}$ column of A becomes the $k^{\text {th }}$ row of A^{T}.

If $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]$, then $A^{T}=\left[\begin{array}{ll}a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23}\end{array}\right]$
If $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]$, then $A^{T}=\left[\begin{array}{ll}a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23}\end{array}\right]$

Transpose of a Scalar

Since a scalar is a 1×1 matrix with only one entry, its transpose is itself:

Corollary

(Transpose of a Scalar)
The transpose of a scalar is itself:
Let $\alpha \in \mathbb{R}$ be a scalar. Then $\alpha^{T}=\alpha$
e.g. $5^{T}=5,(-2)^{T}=-2, \pi^{T}=\pi,(\sqrt{3})^{T}=\sqrt{3},\left(\frac{1}{6}\right)^{T}=\frac{1}{6},(2-\sqrt{7})^{T}=2-\sqrt{7}$

Transpose of a Column Vector or Row Vector

A m-wide column vector is a $m \times 1$ matrix. A n-wide row vector is a $1 \times n$ matrix.

Corollary

(Transpose of a Column or Row Vector)
The transpose of a m-wide column vector is a m-wide row vector.
The transpose of a n-wide row vector is a n-wide column vector.
e.g. $\mathbf{u}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right] \Longrightarrow \mathbf{u}^{T}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]^{T}=\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right]$
e.g. $\mathbf{v}=\left[\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right] \Longrightarrow \mathbf{v}^{T}=\left[\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right]^{T}=\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 3\end{array}\right]$

Transpose of a Column Vector or Row Vector

A m-wide column vector is a $m \times 1$ matrix.
A n-wide row vector is a $1 \times n$ matrix.

Corollary

(Transpose of a Column or Row Vector)
The transpose of a m-wide column vector is a m-wide row vector.
The transpose of a n-wide row vector is a n-wide column vector.
Going forward after this section, some new conventions:

- Vectors will no longer have arrows above them (to avoid clutter)
e.g. $\mathbf{u}=\left[\begin{array}{l}0 \\ 4 \\ 2\end{array}\right]$ instead of $\overrightarrow{\mathbf{u}}=\left[\begin{array}{l}0 \\ 4 \\ 2\end{array}\right]$
- Column vectors will mostly be used - if a row vector's needed, transpose.

$$
\text { e.g. } \mathbf{v}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \Longleftrightarrow \mathbf{v}^{T}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \text { instead of } \mathbf{v}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]
$$

PART II

PART II:

MATRIX MULTIPLICATION

Matrix Multiplication (Definition)

Definition

(Matrix Multiplication)
Let matrices $A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[b_{i j}\right]_{n \times p}$. Then:

$$
A B:=\left[\sum_{k=1}^{n} a_{i k} b_{k j}\right]_{m \times p}
$$

where the summation $\sum_{k=1}^{n} a_{i k} b_{k j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j}$
For $A B$ to be well-defined, the 'middle dimensions' of $A \& B$ must match (n)

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{i 1} & a_{i 2} & \cdots & a_{i n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{ccccc}
b_{11} & \cdots & b_{1 j} & \cdots & b_{1 p} \\
b_{21} & \cdots & b_{2 j} & \cdots & b_{2 p} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
b_{n 1} & \cdots & b_{n j} & \cdots & b_{n p}
\end{array}\right]=\left[\begin{array}{ccc}
\ddots & \vdots & \vdots \\
\cdots & c_{i j} & \cdots \\
\cdots & \vdots & \ddots
\end{array}\right]
$$

where $c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j}$

Examples where Matrix Multiplication is Undefined

The following matrix products are undefined since the 'middle dimensions' (in red) do not match:

$$
\begin{aligned}
& \underbrace{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]}_{2 \times 3} \underbrace{\left[\begin{array}{lll}
0 & 1 & 2 \\
3 & 4 & 5
\end{array}\right]}_{2 \times 3} \\
& \underbrace{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]}_{2 \times 3} \underbrace{\left[\begin{array}{ll}
0 & 1 \\
2 & 3 \\
4 & 5 \\
6 & 7
\end{array}\right]}_{4 \times 2} \\
& \underbrace{\left[\begin{array}{ll}
0 & 1 \\
2 & 3 \\
4 & 5 \\
6 & 7
\end{array}\right]}_{4 \times 2} \underbrace{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]}_{3 \times 3}
\end{aligned}
$$

Matrix Multiplication (Step-by-Step)

Matrix Multiplication (Step-by-Step)

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
4 & 5 & 6 & 7
\end{array}\right]=} & {\left[\begin{array}{l}
8 \\
\end{array}\right] } \\
& (\mathbf{1})(\mathbf{0})+(\mathbf{2})(4)=8
\end{aligned}
$$

Matrix Multiplication (Step-by-Step)

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
4 & 5 & 6 & 7
\end{array}\right]=\left[\begin{array}{ll}
8 & 11 \\
&
\end{array}\right]
$$

$$
(1)(1)+(2)(5)=11
$$

Matrix Multiplication (Step-by-Step)

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
4 & 5 & 6 & 7
\end{array}\right]=\left[\begin{array}{lll}
8 & 11 & 14 \\
& &
\end{array}\right]
$$

$(1)(2)+(2)(6)=14$

Matrix Multiplication (Step-by-Step)

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
4 & 5 & 6 & 7
\end{array}\right]=} & {\left[\begin{array}{llll}
8 & 11 & 14 & 17 \\
& & &
\end{array}\right] } \\
& (\mathbf{1})(3)+(\mathbf{2})(\mathbf{7})=\mathbf{1 7}
\end{aligned}
$$

Matrix Multiplication (Step-by-Step)

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
4 & 5 & 6 & 7
\end{array}\right]=\left[\begin{array}{cccc}
8 & 11 & 14 & 17 \\
16 & & & \\
& & & \\
\end{array}\right]
$$

$$
(3)(0)+(4)(4)=16
$$

Matrix Multiplication (Step-by-Step)

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
4 & 5 & 6 & 7
\end{array}\right]=\left[\begin{array}{cccc}
8 & 11 & 14 & 17 \\
16 & 23 & & \\
& & &
\end{array}\right]
$$

$$
(3)(1)+(4)(5)=23
$$

Matrix Multiplication (Step-by-Step)

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
4 & 5 & 6 & 7
\end{array}\right]=\left[\begin{array}{cccc}
8 & 11 & 14 & 17 \\
16 & 23 & 30 &
\end{array}\right]
$$

$$
(3)(2)+(4)(6)=30
$$

Matrix Multiplication (Step-by-Step)

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
4 & 5 & 6 & 7
\end{array}\right]=} & {\left[\begin{array}{cccc}
8 & 11 & 14 & 17 \\
16 & 23 & 30 & 37
\end{array}\right] } \\
& (\mathbf{3})(3)+(4)(7)=37
\end{aligned}
$$

Matrix Multiplication (Step-by-Step)

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
4 & 5 & 6 & 7
\end{array}\right]=\left[\begin{array}{cccc}
8 & 11 & 14 & 17 \\
16 & 23 & 30 & 37 \\
24 & & &
\end{array}\right]
$$

$$
(5)(0)+(6)(4)=24
$$

Matrix Multiplication (Step-by-Step)

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
4 & 5 & 6 & 7
\end{array}\right]=\left[\begin{array}{cccc}
8 & 11 & 14 & 17 \\
16 & 23 & 30 & 37 \\
24 & 35 & &
\end{array}\right]
$$

$$
(5)(1)+(6)(5)=35
$$

Matrix Multiplication (Step-by-Step)

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
4 & 5 & 6 & 7
\end{array}\right]=\left[\begin{array}{cccc}
8 & 11 & 14 & 17 \\
16 & 23 & 30 & 37 \\
24 & 35 & 46 &
\end{array}\right]
$$

$$
(5)(2)+(6)(6)=46
$$

Matrix Multiplication (Step-by-Step)

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
4 & 5 & 6 & 7
\end{array}\right]=\left[\begin{array}{cccc}
8 & 11 & 14 & 17 \\
16 & 23 & 30 & 37 \\
24 & 35 & 46 & 57
\end{array}\right]
$$

$$
(5)(3)+(6)(7)=57
$$

Multiplying a Row/Col Vector by a Row/Col Vector

$$
\begin{gathered}
\text { Let } \mathbf{u}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \text { and } \mathbf{v}=\left[\begin{array}{l}
5 \\
6 \\
7
\end{array}\right] . \text { Then: } \\
\mathbf{u}^{T} \mathbf{v}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
5 \\
6 \\
7
\end{array}\right]=(1)(5)+(2)(6)+(3)(7)=38 \\
\mathbf{v u}^{T}=\left[\begin{array}{l}
5 \\
6 \\
7
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]=\left[\begin{array}{lll}
(5)(1) & (5)(2) & (5)(3) \\
(6)(1) & (6)(2) & (6)(3) \\
(7)(1) & (7)(2) & (7)(3)
\end{array}\right]=\left[\begin{array}{lll}
5 & 10 & 15 \\
6 & 12 & 18 \\
7 & 14 & 21
\end{array}\right] \\
\mathbf{v}^{T} \mathbf{v}=\left[\begin{array}{lll}
5 & 6 & 7
\end{array}\right]\left[\begin{array}{l}
5 \\
6 \\
7
\end{array}\right]=(5)(5)+(6)(6)+(7)(7)=110 \\
\mathbf{v}^{T}=\left[\begin{array}{l}
5 \\
6 \\
7
\end{array}\right]\left[\begin{array}{lll}
5 & 6 & 7
\end{array}\right]=\left[\begin{array}{lll}
(5)(5) & (5)(6) & (5)(7) \\
(6)(5) & (6)(6) & (6)(7) \\
(7)(5) & (7)(6) & (7)(7)
\end{array}\right]=\left[\begin{array}{lll}
25 & 30 & 35 \\
30 & 36 & 42 \\
35 & 42 & 49
\end{array}\right] \\
\mathbf{u v}, \mathbf{v u}, \mathbf{v}^{T} \mathbf{u}^{T}, \mathbf{u}^{T} \mathbf{v}^{T} \text { are all undefined. }
\end{gathered}
$$

Computing Col Vector \times Row Vector via Scalar Mult.

Now, a column vector \times a row vector (AKA outer product) is the trickiest! It's less error-prone to use partitioning \& scalar multiplication as shown below:

$$
\begin{aligned}
& \text { Let } \mathbf{u}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \text { and } \mathbf{v}=\left[\begin{array}{l}
5 \\
6 \\
7
\end{array}\right] . \text { Then } \\
& \mathbf{v u}^{T}=\left[\begin{array}{l}
5 \\
6 \\
7
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
(1) \mathbf{v} & (2) \mathbf{v} & (3) \mathbf{v} \\
\mid & \mid & \mid
\end{array}\right]=\left[\begin{array}{lll}
5 & 10 & 15 \\
6 & 12 & 18 \\
7 & 14 & 21
\end{array}\right] \\
& \mathbf{v v}^{T}=\left[\begin{array}{l}
5 \\
6 \\
7
\end{array}\right]\left[\begin{array}{lll}
5 & 6 & 7
\end{array}\right]=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
(5) \mathbf{v} & (6) \mathbf{v} & (7) \mathbf{v} \\
\mid & \mid & \mid
\end{array}\right]=\left[\begin{array}{lll}
25 & 30 & 35 \\
30 & 36 & 42 \\
35 & 42 & 49
\end{array}\right] \\
& \mathbf{u u}^{T}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
(1) \mathbf{u} & (2) \mathbf{u} & (3) \mathbf{u} \\
\mid & \mid & \mid
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
3 & 6 & 9
\end{array}\right] \\
& \mathbf{u v}^{T}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\left[\begin{array}{lll}
5 & 6 & 7
\end{array}\right]=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
(5) \mathbf{u} & (6) \mathbf{u} & (7) \mathbf{u} \\
\mid & \mid & \mid
\end{array}\right]=\left[\begin{array}{ccc}
5 & 6 & 7 \\
10 & 12 & 14 \\
15 & 18 & 21
\end{array}\right]
\end{aligned}
$$

Matrix Multiplication (Examples)

$\underbrace{\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]}_{3 \times 2} \underbrace{\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 4 & 5 & 6 & 7\end{array}\right]}_{2 \times 4}=\underbrace{\left[\begin{array}{cccc}8 & 11 & 14 & 17 \\ 16 & 23 & 30 & 37 \\ 24 & 35 & 46 & 57\end{array}\right]}_{3 \times 4}$
$\underbrace{\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]}_{2 \times 2} \underbrace{\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]}_{2 \times 2}=\underbrace{\left[\begin{array}{ll}19 & 22 \\ 43 & 50\end{array}\right]}_{2 \times 2}$
$\underbrace{\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]}_{3 \times 2} \underbrace{\left[\begin{array}{c}7 \\ 8\end{array}\right]}_{2 \times 1}=\underbrace{\left[\begin{array}{c}23 \\ 53 \\ 83\end{array}\right]}_{3 \times 1} \underbrace{\left[\begin{array}{ccc}7 & 8 & 9\end{array}\right]}_{1 \times 3} \underbrace{\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]}_{3 \times 2}=\underbrace{\left[\begin{array}{cc}76 & 100\end{array}\right]}_{1 \times 2}$

Matrix Multiplication is NOT Commutative in general!

Most of the time, square matrices do not commute:

Proposition

(Non-Commutativity of Matrix Multiplication)
Let A and B both be square matrices.
Then, in general, $A B \neq B A$.
Suppose $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]$. Then:
$A B=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]=\left[\begin{array}{ll}19 & 22 \\ 43 & 50\end{array}\right]$
$B A=\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{ll}23 & 34 \\ 31 & 46\end{array}\right]$
$\therefore \quad A B \neq B A$

Matrix Multiplication is NOT Commutative in general!

Of course, occasionally there are exceptions:

Suppose $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{rr}-2 & 2 \\ 3 & 1\end{array}\right]$. Then:
$A B=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{rr}-2 & 2 \\ 3 & 1\end{array}\right]=\left[\begin{array}{cc}4 & 4 \\ 6 & 10\end{array}\right]$
$B A=\left[\begin{array}{rr}-2 & 2 \\ 3 & 1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{cc}4 & 4 \\ 6 & 10\end{array}\right]$
$\therefore \quad A B=B A \quad$ (in this particular instance!)

Fin.

